Loading...
Coastal Engineering Appendix • F119 Draft Feasibility Report ancho Palos Verdes Los Angeles County, CA •�`•iV Y��j� • A • � ~ X f .i."3 • � I� Coastal Engineering Appendix Los Angeles District US Army Corps of Engineers • June 2000 0 Rancho Palos Verdes Feasibility Study Coastal Engineering Appendix May 2000 • Table of Contents 1.0 GENERAL 1 1.1 INTRODUCTION 1 1.2 PURPOSE AND SCOPE 1 2.0 PHYSICAL SETTING 4 2.1 GEOGRAPHIC SETTING 4 2.2 BATHYMETRY 4 2.3 REGIONAL COASTAL PROCESSES 4 3.0 CLIMATE 6 3.1 GENERAL CLIMATIC CONDITIONS 6 3.2 STORMS,PRESSURE FIELD 6 4.0 TIDES CURRENTS AND WAVES 8 4.1 TIDES AND WATER LEVELS S 4.1.1 Tides 8 4.1.2 Water Levels 8 4.2 CURRENTS 9 • 4.2.1 General 9 4.2.2 Mid Shelf and Offshore Circulation 9 4.2.3 Longshore Currents 11 4.2.4 Sediment Plumes and Local Circulation 11 4.3 WAVES 13 4.3.1 Exposure 13 4.3.2 Local Seas and Swell 13 4.3.3 Deep Water Extreme Waves 21 4.3.4 Deep Water Extreme Wave Frequency 24 4.3.5 Extreme Wave Transformation Coefficients 24 4.3.6 Extreme Wave Transformation 26 4.3.7 Nearshore Extreme Wave Frequency 28 5.0 LITTORAL PROCESSES 29 5.1 GENERAL 29 5.2 LITTORAL CELLS 29 5.3 SEDIMENT SOURCES AND SINKS 29 5.3.1 General 29 C-I 1110 5.3.2 Sediment Sources 30 5.3.2.1 Beach Fill 30 5.3.2.2 Landslides 30 5.3.2.3 Stream Contribution 30 5.3.2.4 Bluff Erosion 32 5.3.2.5 Historic Volume Change Within Control Volume 34 5.3.2.6 Grain Size Distribution Within the Palos Verdes Shelf 35 5.3.2.7 White"s Point Outfall 41 5.3.3 Sediment Sinks 41 5.3.3.1 Man-Made Structures 41 5.3.3.2 Headlands 42 5.3.3.3 Submarine Canyons 42 5.4 LONGSHORE ENERGY FLUX AND TRANSPORT POTENTIAL 42 5.5 SEDIMENT BUDGET 43 6.0 WITHOUT PROJECT CONDITIONS 45 6.1 IMPACT TO ROCK REEF AREA 45 6.2 SEASONAL VARIATIONS 45 6.3 WITHOUT PROJECT SHORELINES 45 6.4 TURBIDITY 45 • 7.0 WITH PROJECT CONDITIONS 47 7.1 PLANNING CRITERIA 47 7.2 DEVELOPMENT OF ALTERNATIVE PLANS 47 7.2.1 Description of Alternative Plans 47 7.2.2 Breakwater Design 48 7.2.2.1 Section Design 48 7.2.2.2 Stone Gradation and Quantity 49 7.2.2.3 Runup and Wave Transmission 50 7.2.3 Construction Methodology 51 7.2.4 Operation and Maintenance Alternatives 1 and 2 51 7.2.5 Operation and Maintenance Alternative 3 53 7.3 SEDIMENT REMOVAL FROM LOCAL SEA AND SWELL 55 7.3.1 General 55 7.3.2 Initiation of Sediment Motion 56 7.3.3 Analysis using NMLONG 57 7.3.3.1 General 57 7.3.3.2 Model Run for Local Seas and Swell 58 C-II • 7.3.4 Field Data of Distribution of Sediment Transport 59 7.3.5 Sediment Transport Calculated by Others 62 7.3.6 Numerical Methods and Removal Calculation 62 7.3.7 Comparison With Hyder, et al 65 7.3.8 Reef Uncovering Rates 65 7.4 PRE-DREDGING 68 7.5 TURBIDITY REDUCTION 68 7.6 PROJECT IMPACTS TO LOCAL AREA 68 7.6.1 Local Scour 68 7.6.2 Water Quality Behind the Dike 68 7.6.3 Regional Impacts 69 7.6.4 Impacts to Contaminated Shelf Sediments 70 8.0 BASIS FOR DESIGN OF RECOMMENDED PLAN 70 8.1 ESSENTIAL DATA 71 8.2 SURVEY INFORMATION 71 8.3 FOUNDATION INVESTIGATIONS 71 8.4 WAVE CLIMATE AND DESIGN WAVE 71 8.5 STRUCTURE DESIGN 72 • 8.5.1 General 72 8.5.2 Horizontal Alignment 72 8.5.3 Structural Cross Section Design 72 8.6 BREAKWATER MATERIALS 73 8.7 ENVIRONMENTAL CONSTRAINTS 73 8.8 BREAKWATER CONSTRUCTION 73 8.9 MAINTENANCE 73 9.0 REFERENCES 76 10.0 NOTATION 80 C-ill • List of Figures • Figure 1:Location and Vicinity Map 2 Figure 2:Portuguese Bend Landslide 3 Figure 3: Offshore Bathymetry (Source NOAA Chart 18740) 5 Figure 4: General Circulation in Southern California Bight 10 Figure 5:Portuguese Bend Sediment Plume 12 Figure 6.- Wave Measurement Locations 14 Figure 7: Wave Rose for NDBC 46025 21 Figure 8:Portuguese Bend Area%Silt and Clay 36 Figure 9: Vantuna Grab Sample Locations 37 Figure 10:Sand Grain Size Distribution on the Palos Verdes Shelf 38 Figure 11:Silt Grain Size Distribution on the Palos Verdes Shelf 39 Figure 12: Clay Grain Size Distribution on the Palos Verdes Shelf 40 Figure 14:Field Measurements of Transport Distribution 61 List of Tables • Table 1: Tidal Data Outer L.A. Harbor 8 Table 2:Buoy 46025 Statistics 15 Table 3:Deep Water Extreme Wave Data 23 Table 4:Return Period for Unsheltered Deep Water Wave Heights 24 Table 5: O'Reilly Transformation Coefficients 25 Table 6: Transformed Extreme Wave Data 27 Table 7:Extreme Wave Height Distribution Nearshore 28 Table 8:Stream Yields 32 Table 10: Orange County Buff Yield Estimates 33 Table 11:Rancho Bluff Erosion Estimates 34 Table 12: Control Volume Change 35 Table 13:Longshore Energy Flux 43 Table 14:Sediment Budget 44 Table 15:Stone Sizes 49 Table 16:Stone Ouantity and Gradation 50 C-IV se • Table 17: 1996 Beach Point Data 53 Table 18: 1997 Beach Point Data 54 Table 19:Min. Wave Height for Sediment Motion 57 Table 20:Local Waves NMLONG Input 59 Table 21: Transport Potential Australian Sites 62 Table 22: Distribution of Longshore Energy Flux 64 Table 23: Comparison With Hyder, et al 65 Table 24: Uncovering Rate 67 Table 25:Percentage of Tidal Water Exchange 69 Table 26:Essential Data 75 List of Plates Plate 1: Wave Windows 82 Plate 2:Littoral Cells 83 Plate 3:Sediment Budget 84 Plate 4:Stream and Bluff Erosion 85 • Plate 5:Isopachs: 1933-1976 Surveys 86 Plate 6:Isopachs: 1976-1995 Surveys 87 Plate 7:DDE Concentrations on Palos Verdes Shelfi 88 Plate 8:Sediment Thickness Contours 89 Plate 9:Base Map 90 Plate 10:Depth Limited Armor Stone Sizes 91 Plate 11:Alternative 1 Plan 92 Plate 12:Alternative 1 Sections 93 Plate 13:Alternative 2 Plan 94 Plate 14:Alternative 2 Sections 95 Plate 15:Alternative 3 Plan 96 Plate 16:Alternative 3 Sections 97 Plate 17:Alternative 3 Foundation Information 98 Plate 18: NMLONG Velocity Distribution 99 C-v • 0 1.0 GENERAL 1.1 Introduction The study area is located within the City of Rancho Palos Verdes, approximately 20 miles south of downtown Los Angeles (Figure 1). The study area extends from Long Point to Whites Point. The Portuguese Bend Landslide (Figure 2) became reactivated in 1956. The Portuguese Bend landslide has contributed a significant amount of material to the Palos Verdes Shelf, increasing turbidity and covering rocky bottom habitat. This appendix develops the without project conditions, and presents the basis for evaluating the potential for future damages based on a (1) no-action scenario, and (2) a series of with project conditions involving alternative plans. 1.2 Purpose and Scope The purpose of this coastal engineering analysis of oceanographic and coastal phenomena within the study area, is to assess sediment induced damages to the ocean environment. This assessment is used in the development of alternative plans to reduce these damages. Evaluation of these plans includes an analysis of hydrodynamic effects, impacts on coastal process, and the basis for design for each • alternative plan. C-1 III • 4..• \4 ,yi.''l �,TtS�..-t4 klsi ) T • � �� �- Y IIP Luna.. ya'' � j�-')i R 1` '-`�tl'1 ,`y J` � �`�,.�-»�."a�w'� ',`'�V 1 i,)iV�`;..."L../ ` 911--em �1.�-; !�- tj}�> : i - ., / .fit r 'it qF '.�.,,` 2 .....ter ` � ` 4� � �sY eaJ l!' �; j L "� i " .�``F•\ , "•,jl 'a:. J-I s , "� . , ' — ' 3 \t-..1,:- : rTMp ;ams IL^�.- 1) ::',!1.e), SsIeH;:. A.I.t:1 ,,,6‘'1--71 I. ii,,..,:tr.„...:5'1.,,I;-, . ' l' ' ..' ti e.;_ ,ilt% '' 4,, 0 ' ' - N _ % ., _�t�). . ALoSI RDFS --__ --2-- lj -_ • •=s - ��• :r Ng- -..:-..7s--- \�� .,, /----:r--...:_:-.7, • I �-\ ,y.,^ ...;e H i 4 ,5 -�/ :ail x,,."" ^� ` • '` ' ' � Tfl . ND e x.``14;,< . _fit Pt.Vicenter J ^:_ �✓ '-i ,�. CO-.one �9 )�. t . ,.�v„ \•`,`. �,• +..!=ky'nm..„--....,F,„, ..'sr",0-, n " `---; T y �. - o�'�8e '4,': :-mssk ''314 -4.-..ti'.i."IP'`. -'Jr-,E. Long Pt.-- -q_-_ ,-- se8 r, ,.•_ A� _l" ' .. _ !+ 4 i v Ci .o� i end " `;c' �`•a1-1:h.-7'-..1-17.''.:.1,..71,-- =r• _ 4 wry Vicinity Map ti � i.p-Scale 1"=1,300 FeetB1rLFe - __ �.at t z:•, whi t. iii .i' - i\-.:•! _��Ai;-fit+ ;•'`,� .4 i"+ .. A1.0 ►\ tes pt. Location Map i■OA v m Yi•�• is' • Scale:I"=12 Miles ,"A`"'t• tY`"`/2 .�-f. +dry A R 0. S :4,32,1 tUdY 4'inMM0RR R Bim; Figure 1: Location and Vicinity Map C-2 • '--- --';"' .\"... 3..k-- li__--iiiiiiiiiiilli, .. - -..1.,. _. . .. •1 ....... C....c.% ,17:, . —___ -A! ,. ../1:". I\ afic �YL - " a ► !i. r� �� i.,I f _ - o:y_ . .m, � — ; u - - f)1 � /NA • - �, i'' '.4---;--7-------*-'--. — - /�c• - , , • - Yom. 11 t : "••art R -.` t'i. t . '�� /� 1 / S /�/ •.-' 1-0,1>tf2LJSS'A_ e l .�S� _.. =rlip „.• i 1 % fir' I/ )` . Cid.. E .11 _ '� ti' s IN . 6D.N I IT-------.. .\-!---1-3 . .... . --ae. .31, -, ,.......,. ------...._ • :trip z.-5-, --...... -?.. - $ •ted► , •• �ti 1`. • /� f t 4.,,, .i4• 1 `— _ � ". w-• A 4" .A. OCi,.,•.•., u%� _ - c 1, Vii'- - c. \ 6` ((mac j�• - Tl% _ -, A < ' X36` N� '''C) p �sv _k______,� .s..----,.„..„..,_ J6 J '„1V.)do\ PC)RT Wy_,b 12 4 vGESE gFMD V \a 'P'ortuguese nese — E / '•p1 ' • \ 'Point ?, �\� e• Inspiration ] 0 1'000 X2-000 - Point �-, 72 L, •'-t t - • --- S FEET N,..,... Prom Ehlig, 1986b • Figure 2: Portuguese Bend Landslide C-3 III 2.0 PHYSICAL SETTING 2.1 Geographic Setting The study area is located within the Palos Verdes Peninsula, a northwest trending dome located on the southwest edge of the Los Angeles Basin. It is bordered on the south by the Pacific Ocean and on the north by the broad plain of the Los Angeles Basin (USACE 1992). 2.2 Bathymetry The offshore bathymetry is shown in Figure 3. The Palos Verdes shelf in general, gradually slopes from the shoreline to a depth of approximately-250 ft MLLW. The width of the shelf varies from 4 miles off Palos Verdes Point, to 1.5 miles off of the study area, to 13 miles off Los Angeles and Long Beach Harbors. The shelf slopes to the San Pedro Basin via the San Pedro Escarpment. The San Pedro Basin, located between the Palos Verdes Peninsula and Catalina Island, is at a depth of approximately -3,000 feet MLLW. Other major bathymetric features include the Redondo Canyon to . the northwest and the San Pedro Valley to the south. 2.3 Regional Coastal Processes Regional coastal processes of interest include: tidal levels, extreme and daily wave climates, nearshore circulation, and the transport, deposition and erosion of sediment. Locally, potential sediment sources include: the Portuguese Bend Landslide, local creeks and storm drains, and erosion of local cliffs. Potential sediment barriers/sinks include: local headlands, man made structures such as the San Pedro Breakwater, and offshore losses. Due to the alignment of the coastline within the study area and its associated wave exposure, the predominant net transport direction for sediment is to the southeast. C-4 • • • in C , x9 27 24, 13 ,, a.,L' ,: �: � N � '°sc 3]• ••.•�,;m,33 � is fib- .ic • 0.) i 99 79 CAUPON J. .s I' r,,,,--•«'t 1 r''Id- a ,Ps I I•.• N • ! �[-, ,.,, r co 11 r aNa mroe,l, .•.1'Redondo Canyon ;:. M , ` II nE1:CC _rici.iiiii 1 iiirzo WAG :3_ 4A6 .\ . . s‘g• '''...:-f- ;IW :;1::---"''1/ (4',. ';,:- ''''... 1,:i. ill 0== , W /��\& _ -\•,`''x 1 r• BfOs v' •f m eirii lb•� illi,(9 ,nl ''G ! Ir'o'... . ..r}0. /a) Ite'.:..,, `' ��`• /� \ R o Gel : } ; , `1'►j'� ' ;•r �:. '� o III (D t•i�;� �, `. . . �N ,�A *� aa.�:• �' .r..S'' nrid L_13 Harbors r - .x.61;, r • %.'44>r �t f Q� .. rrp TA., *�:. So • . WO,'TV., 'ice'',' .R /atrr�'A `-- �A •'�,4n,y , off,"`.4. tet 7. h r t,`,: �� 111110•:.... 7 ��. , "W P 'Irk,..2.6, � ' 4/0,9• t'i"".. %.0 '1'..4.05 .. ai to AI r• ',�j��`s:, o..w� - •..'...ii,:;•..;•.}.-k••• .••.}.- ,' r, '.S She/ r .,%, •Y- � M•..., a 1...i ) :•.'�s '.i iY Y '!r O ♦ \I 1 :n .+. 'y 0 .. ,.. , . uorrn`or AMA P..q r, ri I dI w C /` r, 1 r _,� �eOj `�® w r nea�rur.».osn 1�+.mss s F.�,w �l r f l ° 1� , 'Sp 9` �'_ ��k ) • CAUTI. A•Y ARtw �. N� \ ........... .sr • ''`, V' .� ,;wti --14f-r" 7-'7., ( '�'• ]"L /.• � ( + \s sty.. Z ,_ 1 aJl Jj • 1� �1 y .wb \ u t 0j ,ariee+ ..1 %�4-1 naro • _• M _, la4.1 Ir,.•.•st• ate ;, cc��}} Ul o' �w�-- 4$r 1 r f.�a7 :a• . r,01• "vat+1: ♦... Pt"). Q 10_._.-'.7`:•-,00, or.ro, Sj � ;• 1!? 4.or -lrnr { •1, lYa 4':: 0' ..., 40 400 fj J 9, p a•7a i0'43 1.1, ra 1.... it I'� ../ ?L -vt° � /+• as421: 1 2l ‘_nl4, 9:.'r.,µ.,' .:?. ri; Ap.C)-1.:19; �_ sdam--+� u, 0 n t n'jfr_ . ����-.tJ7__ :57 !. i� w••9 ED 49 .� N / DUMP A vn h.+ 'ars/ 1 �~ 411, .. J91s; +43 '� /,: / C -�•g / ° . lir 44.III% :Al 4111, ' re 7,--1 O — r 9 gar N•/% A".12:1.11 "' ilk ' \r M \• 1)0 M0 N..IS M✓ W �pp 11%.4.1. i' V] %t r I I ' '"jelli°1146VN* 111. sus. •••) ' I my A ].a, $oss t1s ,1, 1 -...ti ,...` 1'•��\. \ \ sq {: D I�;1 • \��--•••••,-, `� ,., ,,�i.. i`'��\y omits. • ` '•:••"...••••, ;; ^ ..) ._l Z.- .� .;{.'.` r.�j t.\Y / '1--i.: '' `•\ aal N ` ! er- xN C9w .1N• ,'] a\n4,23 PA �� \'! `(�i:.•.:-...:',4"-\ ..�, .i,t a. b ,� / __. M • ; ONN. '7- Z t 0•!K!� 441 .:994 • • I I ' � 4�7�p,mi Q S. rs. _ au r v z - !r•.4" In 0 I. I/ ' ..9., i' aa, >il:hst o'r, i' 3.0 CLIMATE 3.1 General Climatic Conditions The climate of coastal southern California is generally considered to be of a semi-arid Mediterranean type. Ocean-landmass temperature variations result in daytime wind patterns dominated by onshore winds, nightly patterns dominated by offshore flows. Exceptions occur during occasional winter storms, where wind directions vary, and during Santa Ana conditions when winds are usually out of the northeast. The National Weather Service provides summary weather statistics for the southern California area by geographic location. Statistics for Long Beach (closest available data to project site) indicates an average wind speed of 6.3 miles/hour, with an average wind direction of WNW. Daily highs average 74° F and daily lows average 54° F. Average yearly precipitation is 12 inches (NWS, 1998). 3.2 Storms, Pressure Field Ocean swells affecting the study area are generated by three basic • meteorological phenomena: northern Pacific extra-tropical cyclones, eastern north Pacific tropical cyclones, and extra-tropical storms in the southern hemisphere. Extra-tropical cyclones regularly form in the north Pacific from October through May. These storms usually track across the Pacific in an easterly direction. These storms have been responsible for the largest waves affecting the study area. The 1982- 83 and 1988 winter storm seasons resulted from a series of extra-tropical cyclones which produced severe conditions responsible for widespread destruction along the southern California coast. Tropical storms or tropical cyclones develop in the warm waters off the west coast of Mexico during May through November. The tropical cyclones usually track west to northwest, but have been known to veer to various directions. An average of 8 or 9 tropical cyclones per year attain hurricane strength in the eastern north Pacific. These hurricanes weaken and dissipate as they reach the cooler waters of more northern latitudes. If these systems stall or track into an appropriate wave window, fairly large waves can propagate into southern California. Although extremely rare, tropical systems can track up all the way into the southern California area, as evidenced by the tropical storm of September 1939. C-6 • 0 During the southern hemisphere winter, large intense low pressure systems move from west to east across the south Pacific. Locally, these storms can generate very large waves. For the most part, this activity occurs from May to October. These waves travel northward across the equator and into the southern California area. Wave periods are typically long, 16 to 22 seconds. Wave heights reaching southern California typically are small (2 to 4 feet); however, in some instances they can be 10 feet or larger. • C-7 .. 4.0 TIDES CURRENTS AND WAVES 4.1 Tides and Water Levels 4.1.1 Tides Tides along the southern California coastline are of the mixed semi-diurnal type. Typically, a lunar day consists of two high and two low tides, each of different magnitude. The lower-low normally follows the higher-high by about 7 to 8 hours, whereas the next higher-high (through lower-high and higher-low waters) follows in about 17 hours. Tides have a spatial scale on the order of hundreds of miles, and therefore are similar everywhere along the open coast in southern California. The National Ocean Service (NOS), collected tide measurements at the Los Angeles Outer Harbor in establishing tidal datums of the 1960 to 1978 tidal epoch. Tidal characteristics are shown in Table 1. Reference Elevation (ft MLLW) Highest Observed Water Level 7.96 • (1/27/83) Mean Higher High Water (MHHW) 5.52 Mean High Water (MHW) 4.77 Mean Tide Level (MTL) 2.86 Mean Low Water (MLW) 0.95 Mean Lower Low Water (MLLW) 0.00 Lowest Observed Water Level (12/26/32) -2.59 Table 1: Tidal Data Outer L.A. Harbor 4.1.2 Water Levels The variation of water levels along the shoreline is due principally to astronomical tides (ie. tides driven by the moon, sun and planets), storm surge driven by spatial variation in barometric pressure, wind and wave setup, and inter-annual large scale oscillations in the circulation and temperature distribution of the Pacific, commonly C-8 • referred to as the El Nino Southern Oscillation (ENSO). Prediction of astronomical tides is well established and validated by observation. The contribution of the other components to water levels are more random in occurrence, although not entirely independent, and more variable both spatially and temporally. Flick (1991) estimated the ten largest positive tidal residuals at a relatively wave sheltered location in southern California to range from 0.84 to 1.06 feet over a 30 year period of record. Flick (1991) also demonstrated that the joint occurrence of the largest residuals with the highest astronomical tides and/or highest waves were rare, although the analysis subjectively filtered residuals having durations shorter than 1.5 days. Wave setup and setdown along the beach profile varies from a minimum near the wave breaker location and a maximum at the shoreline. Linear wave theory predicts maximum setup of about 4 to 5 percent of wave height. Surf beats or infragravity waves are thought to be the result of non-linear transformation of energy across the surf zone. This phenomenon is not precisely understood but is generally observed with a magnitude of one to several feet during severe wave events. Long term changes in sea level from the "greenhouse" effect, tectonic forces, and other localized ground movement are relatively small by comparison to the other components of sea level. The National Research Council (Marine Board, 1987) considered three plausible future sea level rise scenarios along the coastline of North • America: 0.5 meters, 1.0 meter, and 1.5 meters by the year 2100 (relative to 1986). Past trends at Los Angeles show a sea level rise of 0.004 feet per year with a standard error of 0.0017 ft/yr for the period between 1950 and 1986 (NOAA, 1988). If past trends are projected into the future for Los Angeles, a sea level rise of 0.2 feet would be expected over the 50-year evaluation period. 4.2 Currents 4.2.1 General In the nearshore region, longshore energy flux calculations and observations indicate a net longshore flow to the southeast with a northwest reversal during times of southern swell. Sediment plumes observed in the nearshore zone indicate local cross shore and complex circulation patterns. Measurements made seaward of the -100 ft isobath indicates mean offshore surface flow with mid-level and bottom flow to the northwest. 4.2.2 Mid-Shelf and Offshore Circulation Figure 4 shows general circulation in the Southern California Bight. Noble (1994) states "A poleward flowing undercurrent, the California Countercurrent, also enters the • C-9 Southern California Bight along the continental margin from the southern boundary. • This undercurrent causes currents along the slope off Palos Verdes to flow toward the northwest." A year-long study of circulation patterns on the Palos Verdes Shelf was begun in May 1992 (Noble, 1994). Four moorings were deployed on the shelf and upper slope. The moorings contained current meters located near the surface, mid depth, and near bottom. Noble (1994) states "The mean currents flow generally along the isobaths toward the northwest at all mid-depth and near bottom sites. Mean surface currents are offshore. However there is considerable variability in the average flow field for individual months." 121°W 12d 119° 11$° 111'W I...� \ -- Pair I I Nri \ x� 3ANP7C • itanu�i mid 5 r'r sAN 3Si Y r CRCR o 34°N t Li ...__„• • - s j' 34 N �✓ ��► \ ��C-� �..ib- LOS ANGELSAiK. 7:' T �., Cillfcclia �� i `_j E i �\ ti 'qq 1 QL•renY \ Sr \ � {1 l `" San Pedro Trough l\ \?f!N.5 ��l GST A ‘" "�' ,h``, Trwl'r • "'l , 1 N\ Nr California G`7 �/yl', !"� � '� •Camtacurreat 33° j `"Z , 1 t v ~ ,. ‘., - 33` 1 L.rr 1\% t `\ =c IrrE �o {, i ° �. t i k \ , 32 N 121°W 120° 119° 118° 1113 w 32°N Figure 4: General Circulation in Southern California Bight (From Hickey, 1992 and Noble, 1994) C-10 0 • 4.2.3 Longshore Currents Longshore currents in the coastal zone are driven primarily by waves impinging on the shoreline at oblique angles. In general, the local longshore current flow is the to the southeast with reversals during times of southern swell. Section 5.4 quantifies longshore energy flux. 4.2.4 Sediment Plumes and Local Circulation Frequently, plumes of fine sediment are visible offshore of the landslide and other local areas. The plumes are created by wave action removing fine material from shoreline and suspending it in the nearshore zone. A photograph of plume located at the southeast end of the landslide is shown in Figure 5. The location and extent of the sediment plumes vary sometimes hourly depending on wave activity, wave direction, wind speed and direction, and water level (Linkletter, 1998). Observation of these plumes indicate the complex nature of surface small scale local circulation. In general, cross-shore currents in the form of rip currents and other phenomena move material offshore from the shoreline. Small rip currents move material from the shoreline to form sand bars within the surf zone. Silt and clay sized material are suspended and transported further offshore than sand size material. 411, C-11 • 'FSK, ,!-: • ....... ,„ :_ i` -` tom:`� 1.-Figure 5: Portuguese Bend Sediment Plume (Source: 1-19-89 Vertical Aerial Photo) C-12 • • 4.3 Waves 4.3.1 Exposure The study area is sheltered from deep ocean waves by the offshore Channel Islands and by the extension of headlands located on the Pacific Coast. Four wave windows exist as shown on Plate 1. A southerly window located between the Baja California Coastline and Santa Catalina Island extends from 147° to 170° . A southwesterly window located between Santa Catalina Island and San Nicholas Island extends from 217° to 240°. A westerly window located between Santa Barbara Island and Santa Rosa Island extends from 245°to 277°. A northwesterly window located between Point Conception and Santa Cruz Island extends from 289° to 293°. 4.3.2 Local Seas and Swell There are no wave gauges in the immediate vicinity of the project site. Buoy 46025 located in 2,800 feet of water midway between Catalina and Anacapa Islands provides the best source of measured non-directional data offshore of the project site (Figure 6). Significant wave height and dominant period statistics are available from April 1982 through October 1993 (Table 2). These data are used in the NMLONG analysis as discussed in Section 7.3. Wave heights range from 0.3 ft to 26 feet, with periods ranging from less than 2.3 seconds to greater than 25 seconds. • A few directional wave data sets were researched and the directional wave data from Buoy 46025 from 10-1-92 to 4-30-93 were selected as the directional data set best representing local seas and swell. Table 2 shows the joint distribution of wave heights and periods. Figure 7 shows this information graphically. These data are used to compute longshore energy-flux as discussed in Section 5.4 Wave heights of 1 to 3 feet and wave periods ranging from 2 to 25 seconds are typical of the daily wave conditions at the Rancho Palos Verdes coast. The site normally experiences wave heights of 4 to 6 feet a few times a year. C-13 • S iv S.' s.? 14,, S A.H A PA- -,_ .-- -- . - 460911 `s. . i,.....,:,-- _ - • - A 4-'— 7. 46C2!'. A 1 6 ---__ -...ti 6 „, . ...._.. PACIFC OCEAN 0, -c. . .• ' 5 it ,:_---J-_-:_A•ft, } - A 46G24 C VVIS II 4604-7 '-i 0 ,.-...., • et SOCAL 2 I A NOAA Buoy 1 •c- . 1 \_- i I • Figure 6: Wave Measurement Locations 0-14 S. • t-MONTHLY.4,h70 AN-'*iUA1 FREQUENCY AND c1.15AU1[.AT11+E PERCENT F11K11E+lCY f:0a HS7 E12MFNC. S1ii1TF1c N WAVE HEIGHT(3,3ETE33:9:• FOR: 4419$2-l0 1993;92874 REJCORDS, 974%HAVE ELEMk2.Tl IAN FEB MAR APR MAY 11.7•4 1:1 AUG SEP OCT NOV TIC .m-' F CPF F CPF F CPF F CPF F CPF F CPF F CPF F CPF F CPF F CPF F CPF F CFF F CPT 8.0 I d 1 9 75 39.9 3944 7.7 4 999 I a I * 6 999 6 c 5999 1 A 6 999 12 499 60 8 998 4 990 3 999 13999 3.:3 5 997 6 999 7 999 1$949 5.0 4 997 3 998 31 995 2 999 20 999 45 11996 1099$ 20 996 1 9 3 9 5 999 45999 40 23 995 26 997 24 993 $ r 2 999 5999 42 999 335999 3.3 44992 71 993 77 598 35 999 19999 1 / 6 999 62 993 339 997 3 0 119 985 134 982 207 979 104995 83 99 t 9 17 9 70999 70995 173933 964994 2.5 279 970 516 956 472 950 2799*; 205 988 39 999 5 i 28 993 62 999 293 969 ,63 963 2541 983 2.0 510933 1026530 1062 En 300947 6322064 359995 33 4 29999 99993 250991 63195 589934 6456955 1.5 2023 326 1853 731 Z297 7.3.2 1923 84E 2315 592 1669 94-3 846 988 5$3 995 8807 974 1064 957 1713571 3720124 1622 834 1.0 3354 558 2575 461 2577.435 3825 6909 4427 619 4453 725 4931$71 5033 917 4258 361 4330 820 3423 652 2914 597 46205 fi 7 E .5 8803'16 58655 490 69 1082 735 52297 1072 141 14411 196 LOU 2,0 1652241 1974255 16552273 156211I;i011 iss7 .0 19 ! 1 = 1 • 28 4 457 • MEAN 1.3 1.5 1-5 1.2 1.2 1.1 1.0 .9 1.0 1.0 13 .13 1.2 5.L3 .6 .7 .7 .5 .5 3 3 1 3 4 .5 .6 .$ TOTAL 7532 6E64 7054 397] 8414 7543 7353 7453 6862 7751 7305 7554 90431 MAX 8.0 63 6.31 39 4-3 2.8 2.2 2.6 33 3.3 43 71 8.9 DATE 2SDE 181}3 885021604 8303020/ ROM% 55069100 avN.1450505 92072007 34983307 520927913101402 8211...v321 87121629 8101139 MN 3 :1 3 -3 A 3 3 4 .1 3 .2 .1 .1 DATE 3-1-11 0101 $4020710*7030105 1i30417LG 12052520 87063014 18707910) 822812 930913182102219 83:11904 83122405 7394:32 • - - - •- - ELE.MENr: 13t.7MINAJT WAVE PER7(0Ti -- - - - .- _ - 3! -- {5;,^LN+ 1 FOR: 4.:982-1tt+t95r3'{928 74 RECORDS, 07 3%HAVE. 3AN FEB MAR APR MAY 311N JCL AIX1 SEP OCT NOV DEC ANN F CPF F CFF F CPF F CFF F CPF F CPF F CPF F CPF F CPF F CPF F C1'F F CP$ E' CPF 25.0229179199 2 8 9 r 3 4 C 67 0 20.0 922 997 124 72 999 74 9 41 r 04 0 76 4 314 999 92 999 29 0 5119S+9 93 995 1121 999 :6.7 938 963 900 939 634 933 920 991 991 955 967 988 1059 997 970934 549 935 339 996 613 01.81 7629r 10119 937 143 2394 844 21116 348 191E 898 1955 372 134145 418 1519 360 2038 350 2103 354 1285 905 1660 533 1333919 192! $686 21513 375 11.5 177i 540 1434 554 1545 626 1915 6113 693 724 6333660 371.•57:i 703 572 562 733 1347 673 1670 6677 1652 632 14195637 11.0 577106 .8.114 345 774 407 719 557 367 652 399 57 425 457 42+0 477 654 592 719+499 Sib 453 593 413 7070 481 10.9 257 230 228257 399 298 519 468 47.3 610 355 536 3:1 3% 290423 469 497 362`.398 404 845 267 335 4319 492 9.0 200 196 177224 212 211 340403 443 558 324 489 274 354 19:382 276429 316 351 251 293 20 297 3241 355 8.0 3:4 170 352 193 401 211 673 361 963504 711 447 609 314 314 356 515 389 612330 590 261 467 265 6532 313 7.9 253 13_3 301 147 476 154 883 275 11141 397 1078 344 613 234 622 314 545 313 598231 534 197 432 203 7676 246 6:0 307 92 385 103 448 37 906 163 1452 2333 LOU 202 332 150 18157 255 945 334 674 153 466 IN 492 446 9053 162 5.0 228 51 245 47 131 2.3 334 56 470 62 174 53 237 37 559 39 559 95 345 66 278 6$ 316 $1 4C69 61 4.7 137 23 71 tl 25 5 89 75 9 6 58 9 33 5 81 14 90 14 :37 `2 1.05 311 189 39 1239 19 i>? +1 4 7 1 4 1 30 4 6 1 133 2 1 • 31 3 0 1 315 4 61 3 103 14 315 4 20 3 • 3 ` 4 3.1EAlk 12 5 12.2 13.8 113 9.9 19.5 115 11.i 04 :1.1 13.4 115 11 7. S.D. 3.6 6 3.3 39 3.9 4.1 3.9 4.2 3.9 37 3.5 3.3 39 CUTAI. 757$ 6161 7354 3067 3471 7592 76313 7447 6862 7733 71301 `•550 9037: MAX 29: 75.0 250 20.0 19.0 26-4 20.0 25-0 250 20.0 25-9 25.0 25.3 DATE 95912222 022510 93.33010 930429)5 92052904 93C39206 93972917 83:532307 58X611095e10-2721 35110513 571216531 9203306 M7" 23 39 20 16 2.7 2.6 3.4 2.6 2++ 2.7 2.3 23 2.3 DA1t35019103 9103410' 370301911 32294730..943•.:422 830631(0' 550700/5 83252917 V0092i -`1^30 3 42139305 33122411 33+12243 Table 2: Buoy 46025 Statistics C-15 • -I N PERCENT OCCURRENCE Iillll]Ci1CN 73,3 LIL(IRCI:I:AlKulr C 0 El*.11REP.S AZIMUTH MEAN 30144(141) 1.7 L ROBST Hnt(M 1.1 MC 114 TINSIX;.). 4.9 (D FERC:KNTOCCLIRRENCE(X1000.10711353G1R AND PERIOD IVY 11114.t:110N N) STATION:1146071 71 }Y).CA31:4; a 11.1 13110111131. 14.71OU7 22.1.0ROIRas AZIMUTH 940F TOTAL 0\1 0 11E30117 PEAL:PERKY. SECONDS) S76,710N:1)46025 1..1X CARES! 20 1N •=4) 4.9. 7.0-60-70-*0. 90.10%0.31 0.11.9- TOTAL %UF TOTAL.: 0.4 .-r MF:4Y.11t 49 1.4 69 7.9 1,9 99 10.9 111 a.WOOER 1LT.ICINT PEAKPER1(!O{INSNCONIX1) 0.004.99D IN X40 49.}0.6 0. 7.0• ED. 9.0.10.0-11 0.13.0. TOTAL C 1,04•I.YI s ! .. d METERS 4.9 59 1,9 7 9 1.9 9.9 1019 11 9 LONGER Cl) 21.00.9.59 0 000-0.99 3 2 3 0.. 3.00.1.99 . . . . . . . . 0 100.119 . 11 4I S •1011-4.99 . . . . . . . . . 0 !0?-#A9 0 1 .00• .49 0 x00.3.99 . . . . 0 4.004,19 0 4.apy1 y9 0 ` 3.00.7.90 0 5:00.7:99 0 ' 8,00.s.V1 . . . . . . . _ 0 &.404.49 0 93(1.4 99 . . . . . . . a 7.00.7.99 0 10a0. 0 1001I9 0 •it r.t. 0 7 1 0 '0 0 0 0 0 0 9.00. 939 . . , . . . 0 • 10,004 . . . • , 0 TOTAL 2 14 4 . . . . . . • C) MErW 11,101M)- 1.3 I.4R(IEST 1#, 40) I.' Mf;1N INSLCp- 4 7 14EAN llrnp 1.4)• 13 LARDES7111na(Mp . Li MEAN 711311.CJ- 4.3 0) PEK<;L!N 1 OLYu .ENCE. MLOIITI)(IP 11*3(31I7 M'I1 PERLIYD UT 1)TKN�f:'TION PERCENT UCCUR�P.NBO(1ilO7.1 DR:01RES AND PERIOD H1'UIRECT7�i1' ( 22.![3EUHEES ABOUT 67.1 DPAl1EE8 A?1.tIIJ471 21.3 DEOREF:S et11U1.t1'4!!:DEOkEE3.0X1408'1!! 6TATSON:E4071 NG.CASES; 47 3TATM.1341835 30O,CAS93; S %4YFTO TAI.: 09 91 OPTOTAL: 0.1 117.10111 PEN:I•I:R100(IN SECONDS) 31E1ORT PEAR Pt..K100(IN 63r01:01118) IN .-4,4 4.c. 10-69-7.0. SO.9.41.143.11 n.13.0- 'TOTAL IN K4.0 4.0. 30.60. 7.0. RN 9.9-100-11.0.120. T(OTAR. ktc:IP.I4S 49 I.9 69 79 1.9 99 109 11.9 L.ONUCR METERS 49 39 4,9 79 3.9 9.9 109 11.9 LOWER 000.0.73 . . . . 0 000-0.99 3 3 1.40.1.49 I 31 4 . • . . . . 47 609493 . I . . . . . . 1 3.004.5+) 0 2.00•L99 . . 1 . , , . I 1014.99 . . . . . . . • 0 3.91.1:99 0 4,00.4.99 . . . , . . . . . 0 4.91.4:99 0 1.03.5.99 11 7.00.3.99 0 6.00.6 99 0 4.914.99 0 7.00 794 _ 0 790. 39 . 0 1008.99 . 0 000.0.59 , . . . 0 9.00939 . 0 990.9.99 . , • . . , . 0 10934 • . • • LI LD.DO+ 0 'rap, . I l8 0 O 0 - u D .3 D TOTAL 3 I I 0 0 0 8 0 D a • III 0 .. • • • n) MAN 1100M),- 17 1. RLIE0T Hnw(M)- 1,1 MEAN 7P(5L()- 41 MEAN I(405($41.• 1.4 LARGEST Ilow(M)- 2 7 541SAN TP(SEC).• 4 6 cr I•F.1ICEirtCX .1.111.RENCE4741000UP11'EI0HTAND PI:HX)I)BYDIRECTION p c .ri(OCq HENCE{X10O0)OP961U11TAN1)PCR:ODBYDIRECI1lIN (D 77.3I*C REED A1OUI.911 U 1)F.4REFS A(ZINIJI I I 22.5 DEGREES ABOUT 1 12 5 DEOREX1 AfiIMIJTFI IV s-rA Row:114,5025 1,0.CASES' 74 3TAT74N:114602 ha CASES: 6 O t{°W10l'Al: 0.3 910F TOTAL 0. O 11E1ONT PEAK PERIOD NN SECONDS' 11E20111 PEAK PERIOD(M8E0430405) D,-f- IN .4.0 4.0. 3.0. 60 70. 8.4-0.4.10.4-ILO'ILC' TOTAL IN c4.0 4.0- 3.0.6.0. 7.0. 30. 9.0 10.0.110.170• 74)IAL. �' M'CIPSS 4.9 34 n9 7:! 8.9 99 1119 319 4AIVOEH METP.1S 49 3.9 6.9 7Y /9 9.9 109 IS.9 LOkK)ER C 0.0)-(993 7 3 40 0540.99 1 't . . . . 1 Cl) 1.l)•1.99 . 4 4 8 100.1,99 4 4 41 1.03.2 99 . . 6 .. . .. . 6 7.00.7.99 U 1.00.5 99 , . . . . . , . . . '0 3504.99 0 4.00-4 99 0 4,00.4,19 0 30 -399 0 350.3.99 0 6 004.99 0 6006 99 0 7.07.97 0 7507.99 . . . , , , , . . . 0 3.00.199 0 7.00.1,99 0 9.00.9,90 . . , . . • . . 0 9.410,9,9? o 1011•ct.. 0 1000► . . .. . .. . . . . 0 .t)Viti. 7 7 10 0 0 0 9 0 0 0 TOTAL I 3 0 0 0 0 0 0 0 0 n y MEAN 114m(1.1,1- 1.2 LARGEST15nXM)� 1.7 MEAN'IP(SECI'- 4.7 ME.N2Ern(M) . 13 1,13113ESTHac<M)- 2.7 MEANTP(SEC)- 6.0 PERCFS7 OCCURRENCE E4CE[SGICO0)O I1E111111'AND PERIOD 119 DIRECTION PERCENT OCCURRENCE(70010)0F HEWI T AND PERIOD BY DIRECTUO7 2E5 DEOREES ABOUT 133 0 t31;0117:ES AZIMUTH 21.3 DECRt EES ABOUT 157.3 DECIREIGS AE1141111 QTkTlON:1144U23 NO CASES' 1 SIA'l1O4't146021 N1),CAXI*- 13 Si 01'0(S0511 0:1 SOF TOTAL: 0.9 11L7Ot4T f PAK 7E3t1OD 0'TOTAL' HEI0HT PEAK PERIOD(IN SECONDS) IN t4.G IA. },(► AK 7.0 8.0 90.900.11.0•ILO• T4)TAL 01 <40 45-35-65-70- E0 9.0-14)00 11.0-1706 TOTAL 6 MET METERS 4,4 $9 6.9 79 9.9 9.9 109 11.91ANGTMETERSR 49 3.9 .9 '7.4 9.9 9.9 10,9 11.9 LAMER 4:01-0.99 11 l I 0.00.0.99 l 2 1 4 1.00-1.99 . . 4 1 1 7 2 . . 1 16 1.00.1.99 . 1 1 3.0.299 . . . J 1 3 7.0.299 1 3 ]50.34.99 . . . . . . 1$ 2.01599 0 4.00.499 . . 0 4.40 4.99 0 300-5.99 . 0 kOr••319 0 6:00.6.99 0 6.004.99 0 7.03-7.99 0 7-007,99 9 1,10.8.99 p 3.00.199 0 9:00-9.99 . . . . . . 0 900.9.99 y 40.001 0 14405w U TOTAL 0 0 4 4 6 1 '3 0 0 II TOTAL. 1 2 4 '5 0 0 0 0 0 1 -I fa) MEAN IIrcn;M)- 1,6 'URGES!'Nmo(M)- L8 14EAN TT(SEC)- 10.0 MEAN llbw(M) LI LARGEST Hrr. M)M 1.7 MEAN TP(JIEC)- 12 4 CT PERCENT Cc:CURR1':14CE(X1004)OP HF.IOIIT AND PERIOD BY mecum., OCCURRENCE(MOM)[)E HP,A0H1'ANO PERIOD LtY DIREti.TIcaN (D 211 NM It FES ABOUT 110 0 DEGREES A ilkilrrII 72.7 DEGREES AI/CM 201.5 DEOREF,S AZIMCFlH IV nATION 1149015 NO.CASES: 1178 1iortur .- :1,1 STATI011..B44013 NO.CASES: 319 O FIEIOII.1 PEAK PERIOD(IN SECONDS) •. %Of TUTAI,: k0 IN f4.0 4.0. 1,0. 6.0. 7.0. 3.0. 90-10.0-L1.0.12,4- TOTAL 11NR7HT MAX,PE0100(IN SECONDS) n 64ETER$ 4.9 5,4 6,9 7.9 1.9 9,9 Ib.9 11.9 L0N OE11 194 0 4,4• 59, 6G-74-8,0.9,0.100-11.0-12,0- TOTAL C 0.0C-0%99 . . . . - . 5 r) 91 MOTERS 4.9 19 4.9 7.9 69 9,9 10.9 11,9 L40KUR (D 1.02.1,99 , 3 IO 4 19 1 1 . 4 18 76 0410.0,917 . . , . , , I 14 163 190 7.00.299 , . 1 4 8 3 1 . . 2 20 1.004.99 . L 6 3 L . . 2 26 130 L71 900499 . . . . . , . . 3 2.10-2.99 0 400-499 . . . . . . . • 0 3,40-3,99' . . 0 5.00.3..) . . . 0 4.013.439 , , , . , , , . , 0 610.6.99 , . 0 5.11.339 0 7,W-7,99 . . . . . 0 6.90.6.99 0 1.02-1.92 . . - . . n 7.013-7.99 0 900.939 . . . • . . • 0 3,90499 , . . . . , 0 18.00+ 0 9.00.999 , , 0 TOTAL 0 2 17 R 23 4 '1 8 9 127 10.004 . . . . . . () TOTAL 9 1 6 5 1 0 0 3 42 306 n 14RAN1Gmw(M).. 1.1 LARGEST1Imo(b1)- 29 M8; TI(Sr:C}.. 131 A16hNItwi(P4- I.1 C.AROC$THn1a(M)- 2.1 MIiANTNSI1t)- 131 PERCENT C)CCuRR1'stCE(XI0L )OF IILIGirr ANL)PE 11('11)lY Din I:CTUYw PERIANT OCXX,01tAl' +L`8(X1000101111E1c3Ift AN13.PERIOD LIY blIttC114.711 72.1 DF+11RF. :S ABOUT121 0 UES3REF:8, IMVT11 27.3 DEGREES Amur 147.3 D4OHEES AZIMAIWII STATION:1146031 NO,CASES 443 STATION:1146015 NO.CASES. 1361 11:/]FTOTAl, 9.1 !+iO3'TOTAL. '17,1 liF.00HT PEAL:PERIOD(IN SECONDS) IN PEAK PE•RK/D(IN SECONDS) FN X4.0 O. 99. C.O. 7.0. 9.4. 9.0-10.0,11..3-17 0• TOTAL. IN <4.0 40- S.0.6.0. 7.0. 3.0. 9.0.10.0.11.0.12.0 TOTAL 3.1111T.448 4,9 1.9 6 9 7.9 3.9 9.9 10.9 1.19 LONG R Ai1G?ERS 4.9 k9 6.9 7.9 1.9 99 10..9 I l.9 1[HVO3.R a 00.0 99 1 1 21 150 177 0.00.0.99 . 1 7. I 3 9 3 71 16 241 312 1.00.1.99 . . . 2 7 . 4 1 12 309 24.2 1.00-1.99 , , 1 3 II 2$ 32 29 11* 644 186 100'199 2 1 I 1 12 74 3:00.299 , , , 2 9 12 12 4 10 77 136 100.3.99 3 12 17 ).00•).99 0 4.00.4.99 . . . , . . . , 0 100.499 . . . . . . . . . . 0 9.00.5.99 0 3.00.3.99 0 6.0. 11.0046.99 0 4.99 0 7.00.7.99 . . . , . , , ,' 0 7.000 7.99 0 500.199 . . . . _ . . . 0 100.599 0 9 00.9 99 0 9.00.9199 0 14.0.+ p 10,030 0 rarAi. 0 0 0 4 7 I 13 12 33 371 TOTA1, 0 1 3 $ 27 40 or 33 189 994 ill III S... • • • H SD 1'.IEA.. L�14oue(Id). 1.9 IAROEST HIV.+tM)- 3.4 4.1E.4N'1 Y13I 1)- 11,9 CT co F6RCE17OCCURRENCE(i30Cq)osHI:QIrr 61,119111410011YDiRICTICtIEAi C ! I.f LARGEST i11n�M)- 41 MEAN TPdseol_ 11.3 PERF3T )(CURRENCE(XoQ)oY11810HTANDPERIODIVCP.P .E.C110N 77.9 DEGREES ADOIJT 97D.0])EOREES AZIMUTH N 923 DEGREES Al1OUT'292.3 DI!(ItOEB AZIMUTH O 67x7101~"1146.15 NI.).CA883: 7147 STATION'l'NR!1D13 NO.or 7o 914 n S4 OF TOTAL:491 16UP7oTAl 4.4 HElWC7 WAX PL'R1CIU(1w'SECONDS) 11166167 1' 6,0 P 1,0- &D. 9.SECONDS) {4.9 4,0. 3.0. 6.0- R0. 9:0.16.0•MD,120• TOTAL C CN •-4,3 4,u Sb-6.0-7.0. RO. 9 10.0.11.0.170• TOTAL METERS 4.9 3.9 6.9 7.9 19 99 1419 11.9 LONGER CD METERS 4.9 1.9 6.9 7.9 69 9.9 10.9 11.9 UINCIF.R 0.00.8.99 . . 1 . . . 9 14 IS CL 0 00-1499 4 19 3 10 19 74 33 72 139 349 1.00.1.99 . I I 66 132 74 1 1 12 121 147 771 1456 l,{A 1.99 1 2 16 2 9 I 9 104 131 71 700.2 99 . , 6 66 49 1 11 10 31 130 517 00,399 , . 97 L7 2 . . , .S 17 f 93 3 • 3,(4)-3 99 . . . I t . . J II Yl 1083.99 d 00-4.99 0 4.00 .99 2 2 5.00.1.99 . . . . . . . _ . 0 t.00-5 99 0 6.044.99 . . 0 6 00.6.99 0 7.00-799 U ' 7.00.7.99 0 1.004.99 0 190.199 0r. 990.499 9.00.9.97 II 1000- 0 10004 0 70t'61. 1 3 34 14 6 0 0 1 12 110 1 oltA.1. 0 17 113 112 134 77 117 161 216 IC87 0 CO ?JEAN 1000(2.41- 1.0 'ARIAS 110001). 7,7 MEANTPtlE.C). 7,6 FERcE{TOCCI'oiuNC:L'(x10c1)UN11E1UfI1'AND'PERI0C519VPI!ECTIC 6 MEAN31ii10l)_ 16 LAROESTH M)- 3,2 MEM TPiaEC)- 14,7 27.3 DECKLES AINJUF 333.31k34Rl'./:.S A'LIMIJill PERCENT OCCURRENCE,(X10030 OF HERMIT 01913 PERIOD OS ERRECTION 9TATIt.)N 1116073 NO.CAST:: I 23.3 OPXIRF.Es A1I0UP 313 0 DP.OREES A21M1113' • 7s,orrowrA3 411 S1'ATSON 1144023 6[7.6035! I: 7 11E7{1IIT TEAT:PERIOD(IM SEC 126) 1402,101A1.: 01 IN -44.0 4,0- 5,0- 60-7,0. 1.0-9.0.to a.l 10.!2 0- ToTht, lillO1 rT PEAL:?ILIUM(1N sa CO l)$) ML1ER5 49 3.9 69 7.9 11:1 4.9 I0.9 419 l UNOCR IN d4.o 4..0. 3.0-460. 7.0• a,9-9,0.10.0.11 A.1;19- TOTAL 0-00-099 0 t$ITTE S 49 9.9 6.9 7.9 11,9 9.9 10.9 11.9 WAWA 1.00.1.99 1 7 . , , . , . '1 0r117-0 99 4 2 3.0'.F•7.99 . • . . . 0 1.00-I99 . I 3 9 3.0.3.9 . . . . . .2 100.399 . . 1 1 . 2 4.0:1.1..99 C 3.0 4.92 0 300.7,99 . . . 4.00.6.99 . . , , . , 0 4.00.4.99 . . • . . . . . 0 (,004:99 0 7.07.7.99 0> 4,004:99 . G I:.LC'a.99 0' 3 0-7.99 0 9.00.3.93 3 1,00.1 99 . . , . . . . • . 0 19.4:0+ '3 TOTAL I 2 0 G 0 0 0 0 II II 9.009 99 010401 0 DO'TAI. 2 1 1 1 0 0 0 0 0 0 • PERCENT OCCURRENCE(X1000)OF HEIGHT AND PERIOD • FOR ALL DIRECTIONS STATION:846025 NO.CASES: 4.896 %OF TOTAL:100.0 HEIGHT PEAT{PERIOD ON SECONDS) IN <4.0 4.0. 5.0- 6.0- 7.0- 8.0- 9.0-10.0-11.0-12.0- TOTAL METERS 4.9 5.9 69 7.9 8.9 9.9 10.9 119 LONGER 0.00-0.99 16 16 21 4 14 22 28 59 175 826 1181 1.00-1.99 3 81 141 128 123 78 121 1b1 31+5192.6 3078 200-299_ . . 47 94 74 26 39 15 45 251 591 300-3.99 . . . I 1 . . . 7 35 44 4.00-499 2 2 5.0 -599 0 6.00-6.99 - 0 7.00-799 0 8.00-899 0 9.00-9.99 0 10.00+ 0 TOTAL 19 97 209 227 212 126 188 235 543 3040 1.1EAN Hrno(34)= 1.3 LARGEST Irmo(M)= 43 MEAN TP(SEC)= 11.9 Table 2 (completed) • C-20 • MEAN WAVE HEIGHT (v LEGEND ,• • 0.43 M. 0.85 M. 1.28 M. i 1.70 M. : ,•'•� PERCENTAGE � OF SAMPLES 0-027. • • �� '; 2-107. ''��' 270' *' '90 10-157. AC•4114,' •, • „. 4 _ NDBC BUOY #46025 180 .. CATALINA RIDGE NOV 1992 — APR 1993 • Figure 7: Wave Rose for NDBC 46025 4.3.3 Deep Water Extreme Waves Extreme wave data are available from hindcast and measurements. The selected data set represents a time period that extends from 1904 to 1988 (Table 3). The data set is derived from four sources as described below. The first component consists of extreme wave hindcasts prepared by Marine Advisors in 1960 (USACE 1988). This hindcast study was performed for a deep water location offshore of Oceanside Harbor. Fifteen storms were selected based on reports of their severity and coastal damage, but two were eliminated due to low hindcast wave heights. The selection of storms excluded events which could not reach the site due to island sheltering effects. One tropical event was selected, the rest were extratropical. This hindcast includes deep water significant wave heights (H0), associated period (T), and associated direction (Ar). The second component consists of extratropical extreme wave hindcasts prepared by Rea Strange et al at Pacific Weather Analysis (USACE 1988). The hindcast period extends from 1958 to 1983. The hindcast location is offshore of Santa Catalina Island. Following a review of historical weather maps, a reasonable number of • C-21 events were selected. This hindcast includes extratropical and tropical events, deep 11111 water significant wave heights (H0), associated period (T), and associated direction (AZ). The third component consists of tropical swell affecting south facing beaches as hindcast by Pacific Weather Analysis (USACE 1988). The hindcast period is from 1967 to 1986. Only waves of 10.0 feet and greater were included in the composite data set shown in Table 3. This deep water data was determined to be of use for any south facing beach located in southern California. The fourth component consists of extreme wave data recorded at Begg Rock Waverider Buoy from 1984 to 1988. The Begg Rock Buoy is a non-directional buoy located in 260 feet of water, located near San Nicholas Island. The buoy is exposed to deep ocean waves propagating from south to north directions. The buoy provided deep water significant wave heights (Ho), and associated period (T). Directions (AZ) associated with wave data measured at Begg Rock buoy were averaged from hindcast information calculated by Kent (Kent 1988) and WIS (USAGE 1991). • C-22 • • Date Ho T Az Ref. (ft) (sec) (deg) 9 Mar 1904 17.9 12.0 225 1 8Mar 1912 17.5 11.5 270 1 16 Dec 1914 13.0 9.9 180 1 28 Jan 1915 16.3 11.8 205 1 1 Feb 1915 16.5 12.4 280 1 26 Jan 1916 14.0 9.6 250 1 1 Feb 1926 12.6 16.0 260 1 6 Apr 1926 11.8 13.8 270 1 6 Dec 1937 11.6 16.4 270 1 15 Sep 1939 26.9 14.0 205 1 20 Jan 1943 16.2 10.8 . 180 1 13 Mar 1952 11.7 11.7 250 1 6 Jan 1953 16.0 19.2 260 1 27 Jan 1958 18.1 13.5 270 2 5 Apr 1958 25.1 17.5 293 2 10 Feb 1960 18.3 18.5 294 2 11 Feb 1963 19.5 13.5 269 2 7 Feb 1969 15.6 14.5 284 2 7 Dec 1969 14.4 20.5 276 2 29 Aug 1972 12.7 17.5 156 3 40 16 Jan 1978 18.6 16.5 284 2 20 Feb 1980 15.6 14.5 255 2 23 Jan 1981 15.4 17.5 265 2 29 Jan 1981 21.5 15.5 269 2 24 Sep 1982 11.1 15.5 158 3 1 Dec 1982 20.4 10.5 293 2 27 Jan 1983 21.0 20.5 283 2 13 Feb 1983 17.1 16.5 275 2 2 Mar 1983 23.6 18.5 263 2 Nov 1984 15.5 17.0 262 4 Dec 1985 21.4 17.0 262 4 Dec 1986 12.0 15.0 280 4 Mar 1987 15.6 15.0 260 4 Jan 1988 33.1 15.0 265 4 1 Marine Advisors 2 Pacific Weather Analysis,Extratropical Combined Sea and Swell 3 Pacific Weather Analysis,Tropical Storm Swell Affecting South Facing Beaches Begg Rock Waverider Buoy data,direction averaged from WIS and Kent data Table 3: Deep Water Extreme Wave Data • C-23 • 4.3.4 Deep Water Extreme Wave Frequency • A return period analysis of the extreme storm wave heights was performed using the partial duration series of 25 storms over a period of 88 years using ACES 1.07e (USACE, 1996). Population parameters were es timated by the method-of- moments. A Fisher Tibbets Type I distribution provided the "best fit" to the data. The results are shown in Table 4. Return Period Significant Height (Years) (Feet) 2 10.4 5 15.8 10 19.3 25 23.8 50 27.2 100 30.5 Table 4: Return Period for Unsheltered Deep Water Wave Heights 4.3.5 Extreme Wave Transformation Coefficients Wave transformation coefficients were provided by Dr. William O'Reilly of University of California at Berkeley. The coefficients include effects of island sheltering, refraction, and diffraction. The coefficients were derived from his Spectral Back Refraction Diffraction Model. The coefficients were derived from a deep water site to a point located between Inspiration Point and Bunker Point in 100 feet of water. Table 5 shows the coefficients. C-24 • 111 Sheltering Coefficients for 5 deg. - 0. 01Hz rectangular deep water directional spectra. Frequency 0.04 0.05 0.06 0. 07 0 . 08 0.09 0. 10 0. 11 0.12 160 0. 48 0.40 0. 62 0. 81 0.83 0.85 0. 85 0.88 0.92 165 0. 30 0.37 0.61 0. 67 0. 69 0.74 0. 79 0.86 0.85 170 0.36 0.27 0.29 0. 12 0. 22 0.45 0. 48 0.50 0.55 175 0.42 0. 18 0.06 0. 07 0. 18 0.05 0. 02 0.02 0.01 180 0.32 0.06 0.05 0. 14 0. 03 0.01 0. 01 0.01 0.00 185 0.35 0. 12 0.04 0 . 04 0. 00 0.01 0. 02 0. 01 0.00 190 0.85 0.26 0. 10 0. 02 0. 00 0. 00 0. 02 0.03 0.01 195 0.41 0.17 0. 05 0.04 0. 00 0. 00 0. 02 0.03 0.02 200 0. 36 0.08 0. 13 0. 04 0. 01 0.00 0. 01 0. 02 0.03 205 0.29 0.23 0. 14 0. 18 0. 04 0.01 0.01 0.00 0.01 210 0.48 0.21 0. 09 0 . 16 0. 09 0.03 0. 02 0.01 0.01 215 0.86 0.42 0.12 0 . 19 0 .26 0. 18 0,14 0. 14 0. 14 220 0.86 0.81 0.71 0 . 56 0.74 0_79 0.81 0.88 0_92 225 0.77 0.90 1.17 1. 02 0. 81 0.83 0.88 0.86 0. 90 230 0.79 1. 14 0,98 0 . 81 0. 88 0.96 0.86 0.88 0.90 235 0. 62 0.32 0.25 0. 30 0. 25 0.50 0.71 0.81 0.81 240 0.61 0.23 0.08 0. 11 0 . 25 0. 34 0.20 0.24 0.24 245 0.24 0.32 0.18 0. 09 0. 34 0. 15 0.06 0.13 0.07 411 250 0.14 0.26 0.41 0.41 0. 42 0.49 0.61 0.74 0.88 255 0. 12 0. 16 0. 32 0. 64 0.71 0.72 0.72 0. 86 0.88 260 0.18 0.37 0. 38 0 .45 0.62 0.67 0.72 0.83 0.96 265 0. 18 0.23 0. 37 0 . 29 0 . 52 0.53 0.56 0.67 0.74 270 0. 14 0. 13 0. 40 0. 55 0 .49 0.40 0.37 0. 44 0.45 275 0. 11 0.08 0. 14 0 .05 0. 15 0. 16 0.16 0. 18 0. 18 280 0.0_4 0.06 0. 05 0.11 0 . 05 0.03 0. 02 0. 01 0. 01 285 0.04 0.06 0. 09 0.03 0. 03 0.02 0.01 0. 01 0.00 290 0.02 0.04 0. 05 0.01 0. 01 0.01 0. 02 0. 02 0. 02 295 0. 04 0. 04 0. 01 0.01 0. 01 0.00 0. 00 0. 00 0. 00 300 0. 06 0. 03 0. 01 0_00 0.00 0. 00 0. 00 0. 00 0. 00 305 0. 03 0.01 0. 01 0.00 0. 00 0. 00 0. 00 0. 00 0. 00 310 0.00 0.00 0. 01 0.00 0, 00 0. 00 0. 00 0. 00 0.00 315 0. 00 0.00 0 . 00 0. 00 0 . 00 0. 00 0. 00 0. 00 0.00 320 0. 00 0.00 0 . 00 0. 00 0. 00 0. 00 0. 00 0. 00 0.00 325 0. 00 0. 00 0 . 00 0. 00 0. 00 0.00 0. 00 0. 00 0.00 330 0 . 00 0. 00 7 . 00 0. 0.0 0 . 00 0. 00 0. 00 0. 00 0. 00 335 0 . 00 0. 00 0 . 00 0. 00 0 . 00 0. 20 0. 00 0. 00 0.00 Table 5: O'Reilly Transformation Coefficients C-25 4.3.6 Extreme Wave Transformation IIP For each of the storms represented in Table 3 as a significant wave height, a directional spectra was assumed. The Jonswap frequency spectra with a peak enhancement factor of 1.0 was used to distribute wave energy into 5 degree frequency bins. Goda's Figure 2.15 Mitsuyasu Type Directional Spreading Function was used to distribute the energy in 5 degree directional bins. The coefficients listed in Table 5 were then multiplied by the energy located in each bin. A resulting directional spectra for each storm near the site was obtained. Finally an equivalent HS for each storm was obtained by square rooting the total energy in each spectra and multiplying by four. Table 6 shows the results. • C-26 Date Ho T Az HS @ site (ft) (sec) (deg) (ft) 09 Mar 1904 17.9 12.0 225 10.9 08 Mar 1912 17.5 11.5 270 8.8 16 Dec 1914 13.0 9.9 180 6.0 28 Jan 1915 16.3 11.8 205 7.9 01 Feb 1915 16.5 12.4 280 7.1 26 Jan 1916 14.0 9.6 250 8.4 01 Feb 1926 12.6 16.0 260 7.2 06 Apr 1926 11.8 13.8 270 5.9 06 Dec 1937 11.6 16.4 270 5.8 15 Sep 1939 26.9 14.0 205 12.2 20 Jan 1943 16.2 10.8 180 7.5 13 Mar 1952 11.7 11.7 250 7.0 06 Jan 1953 16.0 19.2 260 9.2 27 Jan 1958 18.1 13.5 270 9.0 05 Apr 1958 25.1 17.5 293 7.4 10 Feb 1960 18.3 18.5 294 5.4 11 Feb 1963 19.5 13.5 269 9.8 07 Feb 1969 15.6 14.5 284 6.7 07 Dec 1969 14.4 20.5 276 6.8 29 Aug 1972 12.7 17.5 156 6.9 • 16 Jan 1978 18.6 16.5 284 8.0 20 Feb 1980 15.6 14.5 255 9.3 23 Jan 1981 15.4 17.5 265 11.1 29 Jan 1981 21.5 15.5 269 10.7 24 Sep 1982 11.1 15.5 158 6.0 01 Dec 1982 20.4 10.5 293 6.2 27 Jan 1983 21.0 20.5 283 9.1 13 Feb 1983 17.1 16.5 275 8.0 02 Mar 1983 23.6 18.5 263 16.5 Nov 1984 15.5 17.0 262 8.9 Dec 1985 21.4 17.0 262 12.5 Dec 1986 12.0 15.0 280 5.2 Mar 1987 15.6 15.0 260 9.0 Jan 1988 33.1 15.0 265 22.9 Table 6: Transformed Extreme Wave Data C-27 4.3.7 Nearshore Extreme Wave Frequencyjoih An extrema) frequency curve-fit of the data presented in Table 6 was performed to estimate significant wave height return periods offshore of the site. ACES 1.07e (USACE, 1996)was used with a Weibull distribution with k=0.75 for the "best fit". These data are presented in Table 7. The extreme nearshore return period wave heights seem reasonable for the rarer return periods but appear to be under estimated for the more frequent return periods. Return Period Wave Height (years) (ft) 2 5.2 5 7.7 10 9.9 25 13.2 50 15.9 100 18.8 Table 7: Extreme Wave Height Distribution Nearshore • (at 100-foot water depth) C-28 i • 5.0 LITTORAL PROCESSES 5.1 General The study area is contained within a region called the Palos Verdes Subcells (Plate 2). Adjacent littoral cells include the Santa Monica Cell to the north and west, and the San Pedro Cell to the east and south. The prevailing wave direction in the study area is westerly, and the net longshore sediment transport is from a northwest to southeast direction. Background information on the two adjacent littoral cells and subcell regions follow. 5.2 Littoral Cells The Santa Monica Cell extends from Point Dume to Palos Verdes Point (USACE 1986). The northwestern part of this cell (Malibu area) is characterized by rocky headlands and seasonal pocket beaches. The central portion of this cell (Will Rogers to Torrance) is characterized by year-around sandy beaches which were artificially widened and compartmentalized by beachfills and coastal structures (groins, jetties, and breakwaters). The southeastern portion of this cell (Palos Verdes Region) is characterized by rocky headlands and pocket beaches. • The Palos Verdes Subcells extend from Palos Verdes Point to Point Fermin, a distance of approximately 12 miles (USACE 1986). This region is characterized by rocky headlands and pocket beaches. The San Pedro Cell extends 31 miles from Point Fermin to the city of Corona Del Mar just southeast of the Newport Submarine Canyon (USACE 1986). This cell has been extensively modified by man. Major watersheds have been dammed reducing sediment yield. The extensive breakwaters constructed for Los Angeles and Long Beach Harbors have reduced wave energy, thereby reducing sediment transport in this area. Jetties protecting Alamitos Bay, Anaheim Bay and Newport Bay also have modified cell dynamics (USACE 1986). The following discussion will focus on the Palos Verdes Subcells, with information provided on the Santa Monica and San Pedro Cells when pertinent. 5.3 Sediment Sources and Sinks 5.3.1 General A control volume has been established in order to study sediment flux within the area of study (see Plate 3). The control volume extends from Long Point to Whites • C-29 Point, and from the 0 ft MLLW contour to the -100 ft MLLW contour. Evaluation of the change in sea floor elevation between three dates will aid in the understanding of sediment accretion and erosion patterns. Potential sediment sources (material into the control volume) and sediment sinks (material out of the control volume) are highlighted below and discussed in detail further in this section. Potential sediment sources include: beachfills, the Portuguese Bend landslide material, local streams and storm drains, bluff erosion, littoral flux of material into the control volume from outside the boundaries, and Whites Point Outfall. Potential sediment sinks include offshore and downcoast loss of sediment out of the control volume. 5.3.2 Sediment Sources 5.3.2.1 Beach Fill Minor amounts of sand have been imported for the private beach adjacent to the Portuguese Bend Club. A thin sand layer has been deposited on top of the existing cobble beach. Dates and amounts are unavailable but discussions with local officials indicate an infrequent import of small quantities. For purposes of this report it is assumed that the beach fill contribution into the control volume is negligible. 5.3.2.2 Landslides Leighton and Associates, (1997) states "Charles Abbott and Associates, Inc (1997) conducted a study to determine the total volume of [Portuguese Bend] landslide material lost due to wave erosion. The study determined that 5,834,000 cubic yards of landslide material has been eroded from the landslide toe since the reactivation of the Portuguese Bend Landslide." The calculation period is 1956 (reactivation) to 1995, a 40 year period. Dividing the total accumulation by the time period yields a rate of 145,850 cubic yards per year (cy/yr), or about 146,000 cy/yr. Kayen, et al (1994) states "Other landslide along the margin at Abalone Cove and Pt. Fermin have contributed relatively insignificant amounts of material to the shelf." 5.3.2.3 Stream Contribution In order to estimate the amount of sediment yield of the drainage areas in the Rancho Palos Verdes area under study, PSIAC (1968) was used. This publication delineates a very broad method for sediment yield estimation in the Pacific Southwest Region, and is recommended to be used on areas no smaller than 10 square miles. The area that drains into the control volume was determined from a topographic map. The drainage area (the sum of drainage areas 1 to 6 shown on Plate 4)is approximately 10.7 square miles (sq. mi.). C-30 • 110Within the report, sediment yields are divided into five classes of average annual yield in acre-ft per sq mi, ranging from greater than 3.0 to less than 0.2 acre-ft per sq mi. Nine factors are recommended for consideration to determine the classification: geology, soils, climate, runoff, topography, ground cover, land use, upland erosion, and channel erosion and sediment transport. Characteristics of each of the nine factors give the factor high, moderate, or low yield level. The ratings correspond to numerical values that indicate the relative significance of the level in the yield rating, which is the sum of the values of the appropriate characteristic of each of the nine factors. Each of the yield ratings corresponds to a class of average annual yield. In this manner, the sediment yield can be estimated. The characteristics of this particular region indicated a generally moderate sediment yield level. Using the table of factors and characteristics, a yield rating of 60 was obtained. This corresponds to a classification of an annual yield of 0.5 to 1.0 acre- ft per sq mi. Averaging these values and extrapolating it to the entire area, a total of about 13,000 cu yds per year of sediment yield was calculated. The study drainage area was broken down into 6 smaller drainage areas (see Plate 4) delineated as follows: Area 1: Extends from Palos Verdes Point to the southern border of Palos Verdes Estates (includes Lunada Bay). • Area 2: Extends from southern border of Palos Verdes Estates to Point Vicente. Area 3: Point Vicente to Inspiration Point (includes Long Point and Abalone Cove). Area 4: Inspiration Point to Bunker Point (includes Portuguese Bend). Area 5: Bunker Point to Sea Bench. Area 6: Sea Bench to White's Point (includes Royal Palms Beach Park). The stream yield for each smaller drainage area was obtained by multiplying 13,000 cy/yr by the area of smaller drainage area divided by the area total drainage area. The results are shown in Table 8. C-31 410 Drainage Area Stream Yield (cy/yr) 1 2,739 2 1,639 3 3,699 4 2,953 5 631 6 1,339 Table 8: Stream Yields 5.3.2.4 Bluff Erosion Coastal bluffs within the study have the potential to contribute material to the littoral zone. The same 6 reaches used for stream yield were used for bluff erosion. The cliff heights for each reach are as shown in Table 9. The seacliff erosion report (USACE 1995)was used to provide a range of calculated sediment contribution from Dana Point to Corona Del Mar. An equation with • the parameters of longshore dimension of the littoral sediment lens, the portion of littoral-type sediment in the cliff deposit, mean height of seacliff above the shore angle, and the mean rate of cliff retreat was used to determine the values of littoral-type sediment contributing to the Mean Substrate Sediment Flux. Table 10 summarizes the results. The rates vary from 0.04 to 0.2 cy/yr/ft. These rates are for littoral size sediment. A value of 0.25 cy/yr/ft was selected for Rancho Palos Verdes to include all sizes of material eroded from the bluffs. This rate was multiplied by the lengths of each of the respective reaches to give an estimate of the sediment yield due to cliff erosion in our study area. The values are shown in Table 11 C-32 40 • Area Cliff Heights 1 140 2 120-180 3 100-160 4 160 5 140-160 6 140 Table 9: Cliff Heights Mean Cliff Sediment Yield Location Height(ft) (cy/yr/ft) Dana Pt to Monarch Pt 100 0.2 Monarch Pt to Goff Isl 80 0.2 Goff Isle to Main Beach 50 0.1 • Main Beach 35 0.05 Main Beach to Crescent Bay 45 0.06 Emerald Bay 50 0.04 Irvine Cove 55 <0.08 Crystal Cove 65 0.09 Corona Del Mar 60 0.09 Table 10: Orange County Buff Yield Estimates C-33 • Reach Length (ft) Sediment Yield (cy/yr) 1 7400 1850 2 9400 2350 3 16700 4175 4 8800 2200 5 4300 1075 6 5800 1450 Table 11: Rancho Bluff Erosion Estimates 5.3.2.5 Historic Volume Change Within Control Volume Digital data was obtained from the National Oceanic Survey (NOS) for 1933 and 1976 surveys. The NOS surveys extend from Torrance Beach to Los Angeles Harbor, and from the shoreline to well beyond -100 ft MLLW depths. CESPL-ED-S conducted a hydrographic survey in July 1995 which extended from Long Point to Whites Point and from the shoreline to a depth of-100 ft MLLW. 111 INROADS software was used to create a Triangulated Irregular Network (TIN) model from each of the survey data sets. The TIN model yielded a 3-dimensional surface for each survey. The area of overlap (control volume) of all three surveys was determined. The INROADS software was used to plot isopach diagrams (Plates 5 and 6) which compare the change in sea floor elevation between two consecutive surveys. Volume changes between consecutive surveys was calculated using INROADS. INROADS provided the net gain or loss of material within the control volume. Table 12 contains the results. Table 12 indicates that significantly more material accumulated within the control volume per year from 1933 to 1976 than from 1976 to 1995. Plate 5 indicates the change in bottom depth between the 1933 and 1976 NOS surveys. Aeas of greater than 3 ft gain are are shown adjacent to Smugglers Cove, Portuguese Bend, and downcoast to White's Point to about the -60 ft isobath are visible. Areas of greater than 3 ft loss occur sporadically. Plate 6 indicates the change in bottom depth between the 1976 NOS survey and the 1995 USACE survey. Accretion depths of greater than 3 ft are shown at Portuguese Bend, with greater than 3 ft erosion at Bunker Point. C-34 • One possible explanation for the erosion is presented in Kayen et al, (1994) which says "Storms in 1982, 1983, and 1988 were large and may have eroded the inner-shelf." Dr. Perry Ehlig, in a letter dated October 6, 1987, states "My observations indicate coastal erosion was especially severe during storms of January to March 1983. These storms eroded extensive deposits of rock debris that accumulated below all but the most exposed sea cliffs over a long period of time (decades)." It is possible that much of the material that had accumulated on the reef at Bunker Point and reefs to the southeast, were removed by the severe storms of 1982, 1983, and 1988. Surveys Compared Net Volume Change Yearly Accumulation -(cubic yards) (cubic yards/year) 1933 to 1976 +3,252,000 +162,6001 1976 to 1995 +220,600 +11,600 1933 to 1995 +3,472,600 +89,0411 1 Assumes accumulation occurred between 1956 and 1976 Table 12: Control Volume Change • 5.3.2.6 Grain Size Distribution Within the Palos Verdes Shelf Sadd and Davis (1997) provides data on 90 1-meter deep sediment samples taken from Inspiration Point to near Bunker Point. The samples were obtained from the 5 foot isobath to the 60 foot isobath. Their data indicates a tongue of samples extending off the Portuguese Bend Landslide having a significant (50% to 70%) amount of fines Figure 8. 1111 C-35 + + Portuguese Bend II + + 4.',4 + • Percent silt and clay( 230 mesh#) Inspiration Point S + in sediment samples + 1+ + Portuguese Bend Study Area � + 1 June 1996 p + i + + , + t ++ + Sample Location + + ++ .......i+ V + + '''' ......_..\+: Z + + + 500 meters iilimimmenI \ + +4\\ + AN + Figure 8: Portuguese Bend Area % Silt and Clay Kayen, et al (1994) provides information on the spatial distribution of sand, silt, 0 and clay grain sizes deposited on the inner shelf. Grain size histograms from 1990 Vantuna Research Group grab samples (see Figure 9 for location of samples) were digitized. These data were merged with dis-aggregated grain size data reported in Drake (1994). Plots were made showing the grain size distribution across the shelf for sand, silt, and clay sized material (see Figures 10, 11, and 12). Figure 10 shows that south and southeast of the Portuguese Bend area, the grab samples indicate a high percentage of sand to the shelf break, rapidly decreasing at the shelf break (70 meter, 230 ft isobath). Exceptions are an intrusive areas of sandy-silty- clay (Figures 10,11,12) at Portuguese Bend and downcast of Bunker Point. The Portuguese Bend intrusion of fines is similar to the data presented in Figure 8. Figure 11 indicates that offshore of the 40 meter (130 ft) isobath the grab sample material is mostly silt, with Figures 10 and 12 showing the remaining amount having approximately equal amounts of sand and clay. C-36 0 0 • -+.r x • - .4x-i,..., Aft • r. • •.'••• • -;;.',•7: �� X •sfrir._.)%i 4 �•• •f i.-:�i !ti : m 0:). 110 73'W HP ' . HY 111'W 11$ I tli'VY C 0 IS:311,111-`1in11_111 1-1/;1111 .-)i/t, , P.--;(-1 .. dillii I '1 f)(1 1i/V Vantuna data C , -1 (/) • ( I !- rd /(i 1.16 i ,., illT11 in TOP layer 0 a) e COMO. IN..saw• P. = ' 'a ,... __... CL --... •... 0.) G) ,:.:.-Itt-si•!- • It..7. zva acoi n -1 1 1 ..t ',,, 7.1f. 92.4i7.1:,?,..e2;-.51.1•14......---,,,,,,„. '5 '7.e.7-1.-P-!Pgfi1/4:r-,;;;,:,,c..T:"",;d7.1-,, - . - • -4,-P-7' • ; ". • Ii. - t''''': '-'.' — . •4. „,,.y - • • -. .... ,\ .,, ....._____ 0 —- ' '' .' .. ' „ ,..., !•-_t r- .. - -- . su cn , 21,0 I ISMIS /,'‘**17-44/ • :.. '`', 'ti 1 ... . test> ø.0 Yonissms = CT -114i I, '. I 4'1, •Ts :•.••• • u • ” CUPP i 1 4 . ,.v.., , S,.,.!....!. : • „ 11 4,4; 0 n . ' -). 4s,-k: •ti.i... '.4,-.:1- .,:-.57... I 11---..2-....„. 2 1/4./ , C ' '' '1.T. .F.•vei. + -.- • -,-,;/•• ,-. . .- - n ., ... ...r.p...t.aa :,•4%--.. .-ve -, - , . IC'.•4 c, • ' -41., './ (0 s. ,7..: • 2Se • .:- • i ' 63 M.- . CO rj r, i- ss, fi._..... ..., .,-- .1 \ ..... ...• -7, •-, CD 0 CD cn „, \ \ -)s 0- \ `I \% •• 4., -4, • im,••••64. A owl.- .1 &s r I 51 '•,- qi, '\ 1 •tsA ti 110 )1 IN 110 7 1 w 1 la P 1'w 1 If SRI.* 4 1.4 •te* r” 4111 Ill'tv . .. 0 • . kt Mgt •Il N,ot al *,t! III ry Wee atl ALOE •tt ns IMIN Ot tri r toteslly..ow a', o t U) co *CEP R6 _ a) a) i .f o �a 1 T t a 0-) / a o U a.Il rt baa n p 0')03 tw1 rCl. j.�, Y _ .1.13, CL O C V ;.4' Q --0-, nnl osu. .• J wtmi cent / o S L V r ,% 1 i '„EJ,." ..b. a a) (13 N CO rt.4s ICU .... . 4; r` (0 (0 MO Of 9 //Lnn a is...emtv ~part JOAnt d1J 111 ILUIII V00()'F,90 n) HIS ? ...-., ir( Cn > oWEan Pt►n1Uen NH 0861 'Clap SOSf1 0661 87ts mei!) r�eleeQieBes,n L_ lvL L n *et sit .,, 4; a,• v ter w„ Mfr wt t D O M.(t sll v r; o,l 0)(n LL • S 7 ---... li• 214.• 1,4 r.•W 1,11 ll'W I.4 dirW 1.4 f.., ,. cr)(-15- 0 c c -3 e" l)isaggragatecl Cirairt Sire -1 CD l 4. 4';‘? 1992 USG& data. 1990 AN Vanti ii la (told cp - $ .. ....' Put Clay f‹.:0.004 raril Ill 1111' tayec < ir'• ' DO . ,. ' . ' • • 12 44'4 .. -. .,.., ..1 a.3 . ": ' . ., —. ; •-• f ...1, in-!...-"'4- CD rn • . '-1....'t'...f$:* ._ ;':ii-i. ;:,44" ' N24 . , .. --, F.-.1 ,r,is.'4.-i;... , '•1/21).-• • '\ ' . ' .v. n-0 (D $ • • ,, . ....;,....-.;-:•-.. ..-,.I , 7, '4.8.• .• \ . ,•, ar'sj4.). r., t.11 —• i ' .,,..;,,,,,$;I:f!,... 4,!,....tit ....., . ZtA ,. ••. 1404 1.1.4".....0.... " • "•,...„/ ,I.„ ..,.., cr -'e.-,•'. ' ..14,1•:-.:..----,,•:,: _.,, •,,,,-. ..,..= ..,, • . ...c..'i4.;-"1, ' ,--,,, • . ., ., ,..- .-.7,„:4„, ,1,. 4-04 '-..-..-iti,'-'.:.4.-A'r, i-,-t'-;•,'.,,;-. , ,,".,‘k*,.. ."•• ...Ar. 7-7• i.." 1. N., 4•,...e::S•: ••",!.••!,.'"j". '` 'f. ' .•• • ••••1 • NJ • •I'! '•4,1--,!.!'.11:''' .:. :,-.`,P. tv 1 '' • . ;,-/t. .,,, . ; r 'i.7,!:`•err.4:3,-,L-,.: -14* -1.1,,,,..,, . . ,, -1-3\ • • i m Ai Vit4-.1*•.5pt.)::?: ti,',....i;:•-,Ti-,-k- . .,.r., \,,,,.. . q.., i' ii• ''.....).'••••6'' ',I •1,:s.',0 4.' .."• ' 1'3 ., • ,' 0 ,$•-t- ,., • $ P$4 s......,,5;,.f:.r,-..,,..• • -• ,.., .-. -. '11..'• li ' •:;', ,••:•.e ..-.41,•%.., .;'-:•';...-1'te....k;-1• - ; I .. .,-. ' ... .. ,, .,,,• ., ''... '! t:: •-7'...• o ^ '4 ..,,,4 !:',; -...:, :.*., -••.. :': .-:'.1. c, .:-. •„ 4••• ,....... i (n - ,.1 . al 11;14 CD I : --i • D. . • . CD , . . ...........• . . . • w , ‘..,.., •. n•-• CD ' ' • , • . . -o, 1111 11 e. 111/ 1)'AP 111* 11W I i• )n.w :. (1 se ,..I.,,,. tro Ito to. .• .• 9 • • 5.3.2.7 White's Point Outfall Kayen, et al (1994) indicates that "Daily discharge of suspended solids from the White's Point diffusion pipes began in 1937. The discharge of suspended sediment increased steadily until late 1970, when the daily discharge of solids averaged over 400 mg/I. In 1971, the Joint Water Pollution Control Plant (JWPCP) system began to control suspended sediment discharge through partial secondary treatment of sewage. Since that time, the discharge of suspended solids has diminished significantly (Sediment Dynamics Group 1987). The estimated total discharge for the period of 1937-1987 is 3.8 million metric tons, and an estimated volume of 7.3 million cubic meters for the discharged solids." Lee (1994) says "The US Geological Survey was tasked to characterize a body of sediment found on the sea floor off the coast of the Palos Verdes Peninsula, Southern California. The effluent-affected sediment is present on the continental shelf and extends down the continental slope to a water depth of at least 500 meters. Most of the deposit is contaminated with DDT and PCBs." Plate 7 was taken directly from Lee (1994). Plate 7 shows the concentrations of DDE on the Palos Verdes shelf and slope. The plate shows northwestward movement and deposition of material from the White's Point outfall. This is in agreement with the current measurements described in Noble (1994). The concentrated zone of DDE . nearly touches the -100 ft depth boundary of the control volume. 5.3.3 Sediment Sinks 5.3.3.1 Man-Made Structures Breakwaters, groins, and jetties affect sediment transport. Depending upon length and location, jetties and groins can reduce, divert or even block sediment flow. Two existing coastal structures are found in the Portuguese Bend area. A groin was constructed at the eastern end of Portuguese Bend Beach on top of natural rocks in the 1920's. In 1976 the groin was extended further seaward to reduce the down coast transport of eroded sediment. Although the groin seems to be effective in retaining some cobble material, it's effect is negligible in regards to the scope of the sand and fine grain sediment being considered for this report. A trend gabion structure, 744 feet long, was constructed along the Portuguese Bend shoreline east of Inspiration Point in July 1988. The gabion was constructed to protect a portion of the landslide from wave erosion and to mitigate down coast transport of the sediment debris. Observations indicate that the gabions did reduce sediment erosion of the landslide as evidenced by decreased water turbidity in the immediate nearshore area. The gabions experienced structural deformation from wave C-41 attack and landslide movement and were completely destroyed within one year of construction. 5.3.3.2 Headlands Headlands can partially or completely block sediment flow. Observation of the coastline between Abalone Cove and Cabrillo Beach indicate no permanent sandy beaches created by headland induced accumulation. Headlands within the study area permanently retain small amounts of material. 5.3.3.3 Submarine Canyons Submarine canyons function as sediment sinks for material transported in the littoral zone. No submarine canyons are located close enough to shore to affect sediment transport within the study area. 5.4 Longshore Energy Flux and Transport Potential The longshore transport rate, Q, which estimates the volumetric rate of movement of sand parallel to the shoreline was obtained using ACES 1.07e. ACES uses the following equations: (1) Q = Ps(K) • (Ps -p)ga' (2) Pis= 0.0884 pg3/2Hb5/2sin2ab Where: Q is the theoretical longshore transport rate of material parallel to shore. PIs is the longshore component of wave energy flux per SPM Equation 4-49. K is a dimensionless empirical coefficient Ps is the density of the material transported p is the density of water g is acceleration due to gravity a' is the ratio of volume of solids to total volume Hb is the significant breaker height ab is the angle of approach at breaking ACES 1.07e transforms the directional wave data from a deepwater site to the breaker conditions using Snell's law and a conservation of the wave energy flux equation (USACE, 1996). The buoy data from Section 4.3.7 was put into the proper format, and a shore normal azimuth of 215° from the center of Portuguese Bend Bay C-42 • was used. A default value of K=0.39 was used. The results by direction band are shown in Table 13. Band Center Az Transport Rate cy/yr 7 135 173.3 8 158 2,417.5 9 180 6,651.5 10 203 1,562.6 11 225 -1,979.2 12 248 -28,918.3 13 270 -83,329.8 14 293 -3,321.5 15 314 -0.0 GROSS 128,353.7 NET SE -106,743.9 • Note band widths were 22-,-is SE transport,+is NW transport Table 13: Longshore Energy Flux 5.5 Sediment Budget Plate 3 summarizes the quantification of sediment sources and sinks affecting the control volume. The following sources are included: stream and bluff erosion, Portuguese Bend landslide erosion, and an estimation of material being transported into the control volume from around Point Vicente and Long Point. Due to the orientation of the coastline from Palos Verdes Point north, the net transport in this region will be to the northwest and therefore not impact our study area. Beach fill material is considered negligible. Based on the dispersion of pollutants from White's Point outfall (Plate 7), material deposited by the outfall is assumed to remain outside of the -100 ft MLLW boundary of the control volume. . C-43 Section 5.3.2.2 indicates a landslide contribution of 146,000 cubic yards per year. Streams and bluffs contribute 4,000 cy/yr into the control volume from areas 1 and 2, and 18,000 cy/yr from areas 3 through 6. The total stream and bluff contribution falls well below the net potential transport rate of 107,000 cy/yr calculated in Section 5.4. This indicates that before the Portuguese landslide was activated in 1956, most if not all of the material that entered the control volume was transported out of the control volume. Based on this, it is assumed that the 1933 hydrographic survey was probably similar to conditions in 1956 prior to initiation of the slide. The historic rate of accretion within the control volume will therefore be the amount of material accumulated from 1933 to 1995, divided by 39 years (1956 to 1995). This rate of accumulation is 89,000 cy/yr. In order to balance the sediment budget, an additional 79,000 cy/yr of material would have to be removed from the control volume. It is assumed that some of this material is carried downcoast and out of the control volume and some of this material (mostly fines) is deposited offshore of the control volume. Table 14 summarizes the sediment budget. Assuming the landslide contribution rate remains constant, the values given in Table 14 are predicted to occur for future without project conditions. Rate (cy/year) • + = Entering C.V. Source - = Leaving C.V. * = Remains in C.V. Stream and bluff contributions +22,000 Landslide contribution +146,000 Calculated accumulation in control volume *89,000 Longshore and offshore transport out of control volume -79,000 Table 14: Sediment Budget C-44 • • 6.0 WITHOUT PROJECT CONDITIONS 6.1 Impact to Rock Reef Area Since the advent of the landslide, material has encroached upon the ocean and covered the original bottom with sediments. Plate 8 shows the thickness of sediment over bedrock. With a net gain of 89,000 cy/yr of sediment to the area, the thickness of the sediment layer will continue to increase. 6.2 Seasonal Variations The without project bathymetry (Plate 9) is expected to show seasonal variation, with waves associated with the winter storms transporting material cross shore into deeper waters and also longshore to the southeast, possibly exposing some reefs and rocks. The southerly, long period waves associated with summer and early autumn months return sediment onshore and provide a sand covering over some of the rocks and reef. 6.3 Without Project Shorelines • Shoreline positions in 1870, 1959, 1972 and 1982 are shown in Figure 18 of the Geotechnical Appendix. In the vicinity of the landslide, the shoreline shows historic movement seaward. 6.4 Turbidity It is believed that historic turbidity levels within the study area have been increased with the sediment input generated by the landslide. Fine material (silt and clay sized particles) are washed into the littoral zone and carried offshore and downcoast. Figure 13 shows extensive turbidity occurring from the landslide area to White's Point. The Environmental Appendix describes turbidity impacts to the existing region. • C-45 0: vaar, • i s�•. "•.'-'2',-;' , • •me% ;,fiy�,.+. -ttf 1' >1 ^ ti - r: a+ J° w 1 r M1is , 1 -4 -, .. _ . Bunker P.. -i- _ ad • • c. • 4. 0 m Figure 13: Extensive Turbidity from Portuguese Bend to White's Point C-46 • 7.0 WITH PROJECT CONDITIONS 7.1 Planning Criteria Alternatives were developed primarily to keep sediment generated from the landslide from impacting surrounding habitat areas. A total of 10 concepts were considered in an earlier phase of this study. Most of the concepts were eliminated (see Main Report). The remaining three alternatives are attached breakwater plans. The breakwaters are designed with a core elevation of +6 ft MLLW to retain sediment at the Mean Higher High Water (MHHW)tide level. The breakwaters are designed to surround the existing slide thereby retaining all the slide material. 7.2 Development of Alternative Plans 7.2.1 Description of Alternative Plans The breakwater plans are: Alternative 1 (Plate 11): construction of 2500-foot-long breakwater located 200 feet seaward from the 1995 bluff toe. Maximum crest elevation is +21 ft MLLW. Hard • rock habitat is allowed to recover due to nearshore sediment transport. Alternative 1A is the same plan as Alternative 1, except predredging of sediment is used to expedite to recovery of hard rock habitat. Alternative 2 (Plate 13): construction of 2500-foot-long breakwater located 400 feet seaward from the 1995 bluff toe. Maximum crest elevation is +24 ft MLLW. Hard rock habitat is allowed to recover due to nearshore sediment transport. Alternative 2A is the same plan as Alternative 2, except predredging of sediment is used to expedite recovery of hard rock habitat. Alternative 3 (Plate 15): construction of a 2400-foot-long breakwater located 50 feet seaward from the 1995 bluff toe. Maximum crest elevation is +13 ft MLLW. Hard rock habitat is allowed to recover due to nearshore sediment transport. Alternative 3A is the same plan as Alternative 3, except predredging of sediment is used to expedite recovery of hard rock habitat. • C-47 7.2.2 Breakwater Design • 7.2.2.1 Section Design Preliminary rubble-mound design sections for the three alternatives are shown in Plates 12, 14, and 16. Armor stone sizes were designed using Hudson's equation (USACE 1984). Standard two and three-layer cross sections were utilized. Depth limited wave heights were calculated using Figure 7-4 (USACE 1984). This methodology relates wave period, water depth at structure, and nearshore slope to depth limited wave height. Plate 10 shows depth limited wave heights (Hb) calculated using this methodology for a range of water depths. Mean tide level was added to the various water depths to give ds (water depth at structure). A wave period of 17 seconds was considered representative of larger wave events at the site. (3) W = wr H3/ KD (Sr -1)3 cote Hudson's equations (Equation 3) relates armor stone weight (W), to unit weight of the stone (wr = 165 pcf), wave height (Plate 9), stability coefficient (KD = 4.0), specific gravity of armor unit relative to seawater (Sr = 2.58) and structure slope (cote = 2.0). Armor stone sizes for various depth regions were selected based on the results of Plate 10 utilizing Equation 3. For Alternatives 1 and 2 armor stone crest widths of three stones were used. An armor stone crest width of 6 stones was used for 4110 Alternative 3. An armor stone layer thickness of two stones was used for all alternatives. Crest width and layer thickness were calculated using Equation 4 (USACE 1984). (4) r = n kL (W/wr)113 Equation 4 relates layer thickness ®to number of stones in the layer (n), layer coefficient (kA = 1.0), weight of armor of individual armor unit (W), and unit weight of the stone (wr = 165 pcf). The armor layer thickness and crest widths were calculated for the various stone sizes as shown in Plate 10. USACE (1984) recommends an underlayer weight of 1110th the weight of the armor layer. Plate 10 shows the corresponding underlayer weights. Underlayer thickness is calculated using Equation 4 and is shown in Plate 10. Underlayers were required for Alternatives 1 and 2 but not Alternative 3. Table 15 shows the selected armor stone size per reach. C-48 • • Alt Reach Armor Layer Crest Under- Layer Typ (sta to sta) Stone Width Width layer Width Sec Weight (ft) (ft) Weight (ft) (tons) (tons) 1 0+00 to 2+30 1 4.5 7 n/a n/a A-A 1 2+30 to 5+30 6 8 13 0.6 4 B-B 1 5+30 to 22+70 9 10 14 1 5 C-C 1 22+70 to 25+20 6 8 13 0.6 4 D-D 2 0+00 to 2+30 1 4.5 7 n/a n/a A-A 2 2+30 to 4+25 6 8 13 0.6 4 B-B 2 4+25 to 8+25 12 11 16 1 5 C-C 2 8+25 to 20+25 17 12 18 2 6 D-D 2 20+25 to 23+00 12 11 16 1 5 C-C • 2 20+00 to 25+25 6 8 13 0.6 4 E-E 3 0+00 to 0+50 3 7-10 20 N/A N/A A-A 3 1+04 to 10+87 3 7 20 N/A N/A B-B 3 10+87 to 23+00 3 7 20 N/A N/A C-C 3 23+00 to 24+50 3 10 20 N/A N/A D-D min. Table 15: Stone Sizes 7.2.2.2 Stone Gradation and Quantity Stone gradations were obtained using 0.75 to 1.25 the values of W given in Table 15 and are shown in Table 16. Representative cross sections were used in an "end-area" volume computation. The solid volumes calculated were converted to weight III C-49 of stone using a factor of 1.5 U.S. tons per cubic yard. Table 16 shows the estimated • quantities. Alt Stone Type Quantity Gradation (U.S. Tons) (U.S. Tons) 1 Core Stone 107,000 To be determined in final design 1 B 0.6 14,500 0.5 to 1.0, with 50% > 0.6 1 B-1 80,900 0.5 to 2.0, with 50% > 1.0 1 A-6 16,700 4 to 8, with 50% > 6 1 A-9 103,900 6 to 11, with 50% > 9 2 Core Stone 154,200 To be determined in final design 2 B0.6 10,790 0.5 to1.0, with 50% > 0.6 2 B-1 41,500 0.5 to 2.0, with 50% > 1 .0 2 B-2 77,200 1 to 3, with 50% > 2 2 A-6 15,800 4 to 8, with. 50% > 6 2 A-12 46,700 9 to 15 with 50% > 12 2 A-17 101,600 12 to 21 with 50% > 17 • 3 B-3 70,000 1 to 4.5, with 50% > 3 3 Core Stone 55,000 To be determined in final design Table 16: Stone Quantity and Gradation 7.2.2.3 Runup and Wave Transmission ACES 1 .07e was first used to transform the deepwater wave data to the site. Buoy data representative of deepwater conditions from April 1982 through October 1993 was used. Table 2 indicates a mean Hmo of 3.9 ft (1.2 m), Tp of 11.2 seconds, and principal direction of 250°. Goda's method of irregular wave transformation resulted in a HS of 4.9 feet at the site. Wave runup was calculated for Alternative 3 only. Runup was not expected to be a design consideration of higher crested Alternative 1 and 2. A nearshore slope of 1:45, C-50 410- • a water depth at the toe of the structure of 14 feet (6 ft MHHW tide + 8 ft depth), a structure slope of 2:1, and an onshore wind velocity of 5.5 knots was used. The permeable structure option was used. ACES yielded a runup HS = 5.1 ft, which added to 6 ft MHHW tide yields a runup HS = 11.1 ft. This is below the +13 ft MLLW crest elevation and is deemed acceptable. During extreme events overtopping will occur. Wave transmission was calculated using the "Wave Transmission Through Permeable Structures" portion of the ACES program. The same nearshore wave height, period, and water depth used in the previous calculation were input. Alternative 1 and 2 transmitted wave heights were calculated at less than 1 inch. The Alternative 3 transmitted wave height was 4 inches. Calculated transmitted wave heights for all three alternatives are very small. No significant erosion will occur at the bluff toe. During extreme events the transmitted wave height will increase and bluff erosion will also increase. 7.2.3 Construction Methodology The breakwater alternatives can be constructed using a land-based or combination land and water-based operation. The construction plans and specifications will not specify the type of equipment to be used, but rather the quality of product. The following describes likely construction methodology. • A land-based operation would include truck mounted cranes, loaders and/or dozers, and many rock trucks. The stone would be transported to the site by truck. Stockpiling would occur with the use of a loader or dozer. Placement would occur with a crane, excavator, dozer or loader. The contractor would likely build his way out on newly constructed structure, possibly from both ends. A combination land and water-based operation would involve placing stone using a crane mounted on a derrick barge and the previously described land-based methods. For the water-based work, a rock barge would be moored along side the derrick barge. Small stone would likely be placed using a skip bucket, while rock tongs would likely be used for large stone. Tug boats would be required to tow the rock barges and to position the derrick barge. 7.2.4 Operation and Maintenance Alternatives 1 and 2 The volume of material and average time interval before landslide material removal from behind the enclosure dike wold be necessary is based upon the historic average slide rate of 7.6 feet/year and the historic sediment contribution estimated to be 146,000 cubic yards per year. Sediment removal would be prudent when the seaward extent of the slide encroaches within a 50-foot buffer of the containment dikes. Alternative 1, which is 200 feet from shore, would require sediment removal (maintenance) about every 20 years (150 feet divided by 7.6 feet/year) with an average • C-51 volume of about 3 million cubic yards. Alternative 2 is estimated to need material removal after 50 years with a volume of about 7 million cubic yards. 411 The material that will be removed will consist of sand, silt, clay sized material plus any miscellaneous debris (tree stumps, vegetable matter, trash, etc) encountered. The debris will be separated and disposed of in a local landfill. The other material could be disposed of in the LA-2 disposal site, located 8 nautical miles southeast of the project site. A portion of the material behind the dike will be submerged in the water behind the breakwater, while a portion will be dry adjacent to the landslide bluff. Two methods of maintenance are possible. One method (Option 1) is to remove the material and transport it via conveyor belt to dump scow barges moored just offshore of the breakwater. The barges would be towed to LA-2 with a tug boat and dumped. The second method (Option 2) is to remove the material and transport it via truck to barges berthed at Los Angeles or Long Beach Harbor. The barges would be towed to LA-2 with a tug boat and disposed. The major equipment required for Option 1 includes a conveyor belt, a truck mounted or crawler crane, one or more loaders, one or more dozers, one or more tug boats, and a number of barges. The major equipment required for Option 2 includes multiple truck mounted or crawler mounted cranes, loaders, dozers, and trucks; and one or more tug boats, a number of barges. 1111. Approximate 1,500 of barge loads would be required for disposal of 3 million cubic yards of material from Alternative 1. This assumes a dump scows with a 4,000 cubic yard capacity and an effective load of 2,000 cubic yards. Tows to LA-2 could be single or tandem tows dependent on availability of equipment and production efficiency at the project site in loading scows. If trucked from the site to the port, about 240,000 truck trips would be needed to haul 3 million cubic yards. Duration for the dredging activity is estimated to require 300 days if by conveyor directly to dump scows and 900 days if hauled by truck. Structural deformation resulting from differential foundation movement is unexpected along the Alternative 1 alignment 200-feet from the present shoreline under the current condition. However, over a 50-year project life it is anticipated that some breakwater maintenance would be necessitated by differential movement of foundation caused by the landslide. For estimating purposes, it is assumed that 25 percent of the dike would be reconstructed once at the mid-life cycle of year 25 C-52 • 7.2.5 Operation and Maintenance Alternative 3 The Geotechnical Appendix BA of this report (Leighton and Associates, 1997) provides information on slide movement at the shoreline through GPS survey points. These data are summarized below in Table 17. Net Horz. Rate Horz. Beach Movement Move Net Bearing Dates Total Point (ft) (ft/day) Days B02 0.018 0.001 S 39° 17' W 9/28/96 to 26 10/24/96 B03 0.016 0.001 N 64° 26' E 9/28/96 to 26 10/24/96 B05 0.020 0.001 S 15° 08' E 9/28/96 to 26 10/24/96 B06 0.031 0.001 N 60° 16' W 9/28/96 to 26 10/24/96 B07 0.526 0.020 S 06° 32' E 9/28/96 to 26 10/24/96 B08 0.015 0.001 N 84° 17' W 9/28/96 to 26 10/24/96 • B09 0.034 0.001 N 00° 44' E 9/0812 /96 to 96 26 2 /96 to B10 0.027 0.001 N 81° 27' W 9/0824 96 26 Table 17: 1996 Beach Point Data Charles Abbott Associates, Inc. (1998) provided to CESPL-ED-DC additional shoreline beach point data. This data is summarized in Table 18. • C-53 • Beach Net Horz. Rate Horz. Total Point Movement Move Net Bearing Dates (ft) (ft/day) Days B06 0.046 0.000 S 76° 54' E 11/25/86 to 429 1/28/98 BBOO 0.0034 0.000 S 76° 54' E 7/23/97 to 88 10/19/97 BB02 7.865 0.088 S 05° 44' W 7/22/97 to 89 10/19/97 BB06 0.158 0.002 N 09° 32' W 7/22/97 to 89 10/19/97 BB08 5.279 0.037 S 09° 09' W 7/22/97 to 144 12/31/97 BB09 3.498 0.019 S 16° 59' W 7/23/97 to 189 1/28/98 BB10 0.066 0.000 S 570 19' W 7/23/97 to 189 1/28/98 BB21 0.425 0.009 N 29° 55' E 12/13/97 to 46 1/28/98 BB23 0.105 0.002 S 22° 51' W 12/13/97 to 46 1/28/98 III BB25 0.064 0.001 S 17° 53' W I 12/13/97 to 46 0/28/98 Table 18: 1997 Beach Point Data Plate 17 shows the GPS point locations, vectors of point movement, and location of shoreline drill holes. The GPS beach point data is only available for a short period of time (26 to 429 days) in relation to the 42 year history of the reactivated Portuguese Bend landslide movement. Three points moved significantly. Point BB02 moved 7.9 feet, Point BB08 moved 5.3 feet. and Point BB09 moved 3.5 feet. Two additional points moved substantially. Point BB21 moved 0.4 feet, and Point B07 0.5 feet. Points BB02, BB09, BB21, and B07 moved at the fastest rate. During 1996 three borings were drilled along the beach in an attempt to define subsurface slide planes and to rock core the entire geologic section of the Portuguese C-54 ., • Tuff. One boring is within the footprint of the breakwater foundation, one is on the edge of the foundation, and one is 55 feet landward of the foundation. All borings were diamond cored when bedrock was encountered in each borehole. At total depth in each hole a suite of open hole electric logs were run, including a dipmeter. Based on subsurface information obtained from these three borings, a composite slidetrace can be mapped along the shoreline. Plate 17 illustrates the composite slide plane orientation and the trace where it daylights beneath the proposed construction. Approximately 40% of the breakwater foundation touches or includes the slidetrace. Future landslide movement rates are discussed in the Geotechnical Appendix BA of this report (Leighton and Associates, 1997). The appendix states "Assuming no change in the overall current conditions, it can be expected that the rate of slide movement will continue at its current rate of 7.6 feet per year, and then slowly increase." Based on the beach point data showing significant movement, the bore hole information, the projected future landslide movement rate of 7.6 feet per year, and the close proximity of the Alternative 3 footprint to landslide activity, it is highly likely that frequent significant foundation movement will occur throughout the 50 year evaluation period. There is no USACE guidance on design of rubble mound structures on moving foundations. Had Alternative 3 construction been completed by late 1996, within one year, portions of the structure regional to Points BB09, BB08, and BB02 would have • been significantly damaged and would have required replacement, damaging approximately 30% to 50% of the structure. Based on the beach point, boring data, slidetrace mapping, and Leighton's estimate of future landslide movement, it is estimated that 30% to 50% of Alternative 3 will require significant repair every year. Maintenance of the landslide bluff material prograding toward the Alternative 3 structure will have to be performed. It is assumed that the historic bluff sediment yield rate of 146,000 cubic yards per year calculated by Charles Abbott Associates, Inc (1997) will continue throughout the 50 year project life. Because the landslide bluff is only 50 feet from the structure toe maintenance will be required often. It is assumed that 730,000 cubic yards (146,000 cubic yards/year x 5 years)of material will have to be removed from the bluff face every 5 years. 7.3 Sediment Removal from Local Sea and Swell 7.3.1 General Sediment deposited on reef habitat in the nearshore zone by the landslide will be removed by natural processes once the supply of material is arrested by the • C-55 construction of Alternatives 1, 2, or 3. Sediment can be suspended by nearshore waves and transported downcoast via longshore current. 7.3.2 Initiation of Sediment Motion Mean grain size contours were plotted from samples obtained in the Portuguese Bend area offshore to a depth of-60 ft MLLW (Sadd and Davis, 1997 Figure 8). Mean grain mesh sizes of 100 to 160 are indicated. These translate to grain sizes of 0.15 mm to 0.095 mm or fine to very fine sand. A representative grain size of 0.1 mm is selected for this analysis. The report also indicates "There is a fairly wide range of silt and clay fraction content (4 to 79% by dry weight) in sediment samples throughout the study area Sediments with the lowest silt and clay fraction content are located along the coast and in the shallow to intermediate water depths near the southeastern portion of the study area." For this analysis we will assume the sediment is non-cohesive or mostly quartz sand corresponding to the sediment found in the shallow and southeast portion of the study area. Quartz sand has a specific gravity (SPGR) of 2.65. Motion of non-cohesive sand sized particles (about 2 mm to 0.1 mm diameter) can be estimated using methodology available in USACE, (1984). Equation 5 relates maximum orbital velocity to particle specific weight, and grain size diameter. (5) U max(-d) = [8 (Ys/Y -1)gdso)o.5 Utilizing Equation 5 the value of y = 64.0 pcf, ys = 165.4 pcf (62.4 x 2.65), g = • 32.17 ft/sec2 , and d50 = 0.1 mm (0.00095 ft) yields U max(-d) = 0.37 ft/sec. This is the calculated threshold velocity for sediment motion by waves. If wave period and water depth are known and utilizing the threshold velocity of U max(-d) = 0.37 ft/sec, minimum wave height for initiation of sediment motion can be calculated using linear wave theory. A mean peak wave period (TP)of 11.2 seconds from Table 2, page C-14 was used. The mean tide level of 3 ft was added to the water depth. Figure 4-29 (USACE, 1984) was used to derive the wave height for initiation of sediment motion. Table 19 shows the results. C-56 • Water Depth (ft) H min for motion (ft) (includes mean tide) 13 0.5 23 0.7 33 0.8 43 1.0 53 1.2 63 1.2 73 1.4 83 1.5 93 1.8 Table 19: Min. Wave Height for Sediment Motion • 7.3.3 Analysis using NMLONG 7.3.3.1 General Plate 8 shows sediment thickness contours in the Portuguese Bend region. The numeric model NMLONGT version 3.0 (NMLONGT, 1991) was used to calculate the distribution of the longshore current along the nearshore profile. NMLONG is a 1-D numeric model that calculates cross shore velocity distribution forced by waves and wind arriving at an oblique angle to the shoreline. Key NMLONG assumptions include straight and parallel bottom contours, the time averaged cross-shore current is zero, application of linear wave theory is appropriate until wave breaking, and the longshore current is time averaged and depth- integrated. Capabilities of NMLONG include ability to calculate wave height, wave direction, mean water level, and longshore current across a multiple bar and trough profile (Kraus and Larson, 1991). C-57 • NMLONG allows for calculation with a monochromatic wave height or a random I• wave height. The random method uses a root-mean-square (rms) wave height from which 100-500 waves are randomly selected from a Rayleigh distribution using a Monte-Carlo based approach. These waves are transformed through the surf zone individually from which statistical properties are obtained by invoking superposition (Kraus and Larson, 1991). The governing equations used for nearshore current calculation are the vertically integrated, time averaged momentum equations (Kraus and Larson, 1991), which are written for the x direction (cross-shore direction) and y direction (longshore direction). After simplifying assumptions, the y direction equation is reduced to include wave driving, wind driving, bottom friction, and lateral mixing terms. Two possible solutions include linear (longshore current weak compared to wave orbital velocity) and nonlinear (longshore current same magnitude as wave orbital velocity) bottom friction. 7.3.3.2 Model Run for Local Seas and Swell Input parameters include: bottom bathymetric profile, computation grid cell size and number of cells, still water level, wave height and period. A bathymetric profile located 650 ft east of the easterly extent of the Alternative 1, 2 and 3 structures was selected as representative of the area to be modeled. The profile data was obtained from the USACE July 1995 survey. A mean Hmo of 1.2 meters (3.9 ft) obtained from Table 2 page C-14, is S representative of deepwater sea and swell at Buoy 46025. A Tp of 11.2 (Table 2) seconds was used. A mean direction (as) of about 250° was derived from Buoy 46025 direction statistics presented in Table 2. ACES 1.07e was used to transform the irregular wave data to a water depth of - 90 ft MLLW. The application "Irregular Wave Transformation (Goda's Method)" was used to obtain Hrms, Snell's law was used to obtain the wave crest angle. The azimuth of the cross-shore direction at our calculation location is 215°. The Mean Tide Level of 2.86 ft MLLW (Table 1) was used as the still water level. Average yearly wind speed and direction (Section 3.2) were converted to appropriate units. These data were input into NMLONG. The random wave height capability was used, as was the non-linear friction capability. The input data are shown in Table 20. C-58 • Parameter Input Run 1 Input Run 2 Hrms (wave height at -90 ft 2.6 ft 2.6 ft depth MLLW) Zref (wave angle at -90 ft 27° 200 depth MLLW) Tp (mean peak wave period) 11.2 sec 11.2 sec Zwind (angle of wind) 77.5° 77.5° W (wind speed) 9.2 ft/sec 9.2 ft/sec M (number of grid cells) 400 400 Dx (size of grid cells) 10 ft 10 ft Dref (water depth at Hrms) 90 ft 90 ft Dtide (tide elevation. MLLW) 2.86 ft 2.86 ft • Table 20: Local Waves NMLONG Input Run 1 results indicate a maximum longshore current of 1.7 ft/sec. Engineering judgement indicates that this value is to large for daily site conditions. The a0 value was arbitrarily reduced to 240° and a second run was done. Run 2 results indicate a maximum longshore current of 1.3 ft/sec which seems more reasonable. Plate 18 shows the distribution of longshore current. 7.3.4 Field Data of Distribution of Sediment Transport Kraus, et al (1988) compared results of the DUCK 85 and SUPERDUCK experiments that were conducted at Duck, North Carolina. Sand traps were employed to collect sand throughout the water column in the surf zone. Kraus,et al (1988) indicated that "The magnitude of the transport rate per unit width of surf zone is found to depend on the product of the local wave height and mean longshore current speed..." They found that longshore transport rate immediately outside the surf zone to be very small. Their traps were arranged in a vertical fashion such that sediment could be collected from the bed to the surface. They concluded that "...sand movement at and C-59 • close to the bed formed the major portion of the transport." Figure 14 shows and example of their data. Kraus,et al (1988) measured velocities which ranged from 1 ft/sec to 0.26 ft/sec and Hm,s values which ranged from 1.9 feet to 2.8 ft. Bodge and Dean (USACE 1992a) also measured cross-shore distribution of longshore transport in the surf zone. They deployed a shore-perpendicular barrier and measured sediment accumulation using a series of surveys over a short interval of time. One profile from their experiments is shown in Figure 14. It shows two transport maximums, one just seaward of the breaker zone and a second in the swash zone. • C-60 • 1.0- RVN 859060918 0.8- - KEY: 1•---1 10 KG/NIH/n2 o.s T3 T1 T2 Ti T5 i 0.1 T6 T7 N 3 0.2 Break Point 0 1 > 0.0 JJ 3 1 v 17. a -0.2 3 3 O -0.1 I C:1 „.1. -12_,..1':__1,2 3 W W -0.6 I -0.8 TOTAL TRAP TRANSPORT RATE (KG/NIH/n) 9.0 -1.0 6.0 3.0 -1.2 t -5.0 0.0 5.0 10.0 15.0 20.0 25.0 30.0 '35.0 40.0 15.0 DISTANCE FROM MSL SHORELINE 1M1 Cross-shore distribution of the longshore sand transport rate measured with traps (Kraus,Gingerich,and Rosati 1989) • Q.> 0 CC 0 Q I I 1 I- 1 1 I I 11 I c I 0 1 _ 0.06 _ I }— Hb =45 cm Iab =5-6° aJ T =8.2 sec – 0 Q, 0.04 _ T ID – 1 N 1— I I I 1 I 1 I 1 1 I I ! t N 0 -0.6 0 i 2 75 E Normalized Distance Across Surf Zone 0 z Measured cross-shore distribution of longshore transport rate at Duck,North Carolina(after Bodge and Dean 1987) Figure 14: Field Measurements of Transport Distribution (after Bodge and Dean, 1987) III C-61 7.3.5 Sediment Transport Calculated by Others • Average annual net longshore transport potential by depth was calculated for various Australian sites (Hyder et al, 1997). Table 21 shows the results. 0-2 m 2-4 m 4-8 m 8-12 m > 12 m Total Kirra 68,380 252,240 136,370 27,860 8,140 493,000 Snapper 188,600 268,260 132,000 10,470 1,230 601,000 Rocks Frog's 16,790 316,170 186,850 -16,360 -8,440 495,000 Beach Lovers 72,380 370,770 181,050 -11,090 -13,100 600,000 Rock Duranbah -11,830 357,950 236,390 8,570 -15,090 576,000 Letitia 145,720 308,930 114,260 2,040 -24,950 545,000 Spit Table 21: Transport Potential Australian Sites 7.3.6 Numerical Methods and Removal Calculation As indicated in Figure 14, field data indicates sediment transport within the surf zone may be occur as bedload and suspended load near the bed with maximum values near breaking and perhaps near the swash zone. Many have attempted to calculate sediment transport as bedload only, suspended load only, and combined bed and suspended load. Bailard and Inman, Kobayshi, Sleath, Hallermier, Hanes and Bowers, Madisen and Grant, Einstein and others have related bedload sediment transport to the some power of orbital velocity (White, 1997). Energetics-based theories, diffusion-based theories, and semi-empirical methods have all been proposed to calculate suspended sediment transport (Drake, et al 1995) C-62 • • Komar derived a theoretical distribution of the longshore sand transport as the product of wave stress produced by wave orbital motions, and the local longshore current (USACE, 1992a). Brown proposed sediment transport as a function of orbital velocity squared for sinusoidal waves. He proposed methods for calculation of second order effects including the effect of sloping bottom, wave asymmetry, wave induced mass transport currents due to non-closed wave orbitals, and non-mass transport currents (White, 1997). These and many more methods have been proposed to calculate sediment transport. No standardized methodology exists for evaluating sediment transport inside and outside the surf zone. For this analysis, it is assumed that longshore sediment transport is a linear function of local depth-averaged longshore velocity. As long as the local waves have enough energy to suspend the sand sized sediment particles (Table 19), it is assumed that local wave and wind induced current will transport the particles longshore. No cross-shore transport is assumed due to local seas and swell. Cross- shore transport out of the control volume can occur in extreme events for sand silt and clay size particles, and may occur more frequently for silt and clay size particles. Table 22 shows the calculation for apportioning the longshore energy flux using NMLONG output depth-averaged velocities. Assuming Alternatives 1, 2, and 3 contain all landslide sediment, the 106,000 cy/yr longshore energy flux rate shown in the • sediment budget will be carrying 22,000 cy/yr of material generated by non-landslide sources within the control volume leaving 84,000 cy/yr available to remove sediment from the control volume. The total longshore energy flux value was apportioned by the total area under the V vs AX curve (Plate 18). Table 22 shows predicted scour rates of 64,000 cy/yr, 6,500 cy/yr, and 3,800 cy/yr for the 0 to -10 ft, -10 ft to -20 ft, and -20 ft to -30 ft regimes respectively. C-63 ' • 4.,:s 4 - i :-........-_...,..-.....L.,-:.4,_..24„...4-..A,4*:4.7A47,,Mt4,,,441/4'.*'"4:.64•1''',-•"'•4.'.,1.-:-::,:,:-:„-:-,--,k'''':,:.'-.,'..-`...---.i:,%,‘,..Ki.:,e.i:i',•7,..7.Z,'-:'.'',4:.-,..'',.,.,' ..','-':'-,'•':.‘^.,.`:1:"-/.".'...-::.:.:''>`.7:%-."7.:;.;.:.:L::,;..?:.7.,.;7F..,•k,- , . 7,-w4\b- .R J N.: r.• ,y�{j.�wn yyxx -- � C\ITKD •7:STC8-M'LYIT COAPT 1 Y�SUS vy}}y1 .a ld•- '- � -41,:„.. .. .. -�. _ .. .. .. .. ` $i GALIFUIA K\ "_,:;_ SAN DIEGO TO SANTA ROSH ISLAND i • `+.o♦e♦eo♦4e00ee♦e4ee®.0♦ooeeojce0ooeeceoeeeeo400oeeo©eeie000e+r+eo�j-►eoee'1 ee`'.eeoeoejee.+"oee4. o.+eoe+e.e�eeeoeeoe,►ee♦o�eeooe+e►oo_o oeoeeeeoo♦�ee.oee�e♦eoe,,♦e'ie.ee.eee♦eeeee+eeeoeoe+ee♦oe�e.e+o�eeeee�e+oeo'oe.eeoe-eee�reoe►eeeEeeeeeeoe'♦eeeooeeeooeEe♦'eeee�`oee�eo;:,.eeeo • eee.eeeee»e• : ' - ' STUDY TUDY : �•'.. '1 .,� e.►e�e.oeeoevevee4eoev. , ". "* - � `~�� , . » 4.,:..--.',40.4.: '_ - AREA , . ♦oeeooe40.e.41ooeeeeeeeooeoo.4.►. _ - - .. .>: -.;., - -oe4eeeeeee. eaeeeeoeeeeeoeNe ►• .. eeeoeooeeeo�o®eeeeOoe©e.ee+oeeoee+ ©oee -.` te:- .t-1,e4. es_�N..e_ _� : �� e �';; = -.' •,;;i; : iiin 1: . oeore+ee000eeee..eo.i. .e+eeeeeoeeoe .��� l� , ; :+ -, ,j"� -: : - f ooeeoe�oeoeeo +®e+�!s , •e�® -` _- ,eo;a ;: :.n : ' - -` _ !Ii-l' it- �eee ®........4e♦e4o0eo+.411 ....eeee® ao ®6+.eA++. eeeoeo0 ' r•��*iv vgit,. E • w • 1� io See + j©ee©eee® eooi0eooo© *to e + 4 :_�o !• ' + +�© �y +� » r-Z . ® e4i'e'-i e �,�e' Nirr. 4A, �, 4P-W. .e0 . . • e4».. ,_. . '.+e+...+ea +++'o�oeeee0 + oeer °ror• NQee µ `t ee - 11- :.eIe:e.e.e.ee.eee4ee.eee ® . 4eAk� � . •- - ��e4e�e�„, .-. - - er4e.:, .-- . - , . . : :,:. ...._ .e4000seop. J# •o4 . . eoe . e - : 1 �.� .rea.o♦�� s- _��- - Vo♦o : eoo.000eooe®m♦© - - _ *oeo© ee _ . _', . - oe©oo , " e4 - � , ti4. : .•>ee000� . I. ©ee+o++o++o+eeeo***: :Ake,eoo*e* - ' - - � e *oe®eoe ' K , %, ,.�eoee _ - ; ..,,-,),0.-.;.i,.,....:Y .. _ . -.Y:. .. r. '4evee000eeo4•eo•ot „ . - 4o4c+000, - �00000vee� - - _,-- - - - eoeeoeeeeeoo.o.o.®a�o oe-oe-eo-ei4eeeeooeeeeoiooe©e�eeeeoeeee+eeco ♦ » M OX'X+X44 �► • e♦_�♦ e400000 - - _Olo.eA. »_ _© oo@o � : oe4e®e � • .a _�eeeee"o. - - Y . _ ; �a.. .ee® oeee®. ». _ sw - o ..� .♦o - - : - %4 v + -. " » . T " - - - x 1 7 I . o ♦ � . . -� - - e _ +s • .. - ' . :. - - _ _ . .__M �F - o .00e » - 6 oo'ooeeee � »♦ » --f, � =- eew - 'W Nor - _- .♦o ©e ©eeo1 - _ _ � eeeeeemeeeeeoee - . ; e ♦ oeoeeeeoeoeos.e' y �- +oee♦”eoeeoeeeeeeeooeeoeooeieo1)oe000.'oeeeieeeeoeooeeeee000eeeeeooeoeeooeV.000�000ee♦meo4.• - » � - » - "s ,- _ : T�_.- -- - _ e♦♦e..seeoeooeoeeoeeooeeece .s.oiee.o♦ooe. � - :: -: : --. eeoeooee0000e•000eow • .:.'_ � . = � e� e000eoe:weeeo.00eeoeeoo♦ . ` _ Y � � w-_ oeoeeeo ...e� A. - _:..r ^: . 4 -.--:;, -... 1 : „•ik -0000e*eeeooeoeov • .. _ _ - - . - - •o®oeoeoe®.eoeoe© oee4.- » • -�.�� •- - w o.eeo♦. _ .,,,,,,., ,, 1 - .°4♦ee♦oeeseeeeeeeeoeeseeee. 4oee4o�e!� » - - M -- • - vl -�� `» eeooeoeoeeoeeo, = - - - � 000ewoi !oe®o�♦oee... ." . T . '--;_3 ee0ee000 - ,ri.' eeeco©oeeeeoe000e0ooeeeeeeeeoeoeeeeeeoe . - - _ ---,.._ • _ - ��i - e4eooeeoeeee � : _ »w ::-.:44.1.;<E..' oeeee. seoeeoe e.e� � �» ;14,� - -♦♦eeoo♦eoees+eee.o.+eeeeo♦ » . ie000eoeoe�e' oeo =n: 1-eeee ..--». .s4- w . », _ - . _ee®eoeoe ®e•eeeeoi`eeei� V ' t� - _ . - _ . ecoosaooeooe ,..eee®eeo+l+.e.ee . k- • i:... ..oeee.eeeeee.."' TR�• BANK _ - _ �. - o.004ee.e..eo.e41e .ieeo.- e _.x♦ ooeeoeeeoe�►oeoeeoeeoeeooeeee�� • » _ _ " - _ .eoe©....,. ee ®oeoeo.eo� * - 4k000,eeeeeoeoeeeoe4®oeeo• » • .. .- - M - _ - - _ - eo®neo®veooe .oee® e®eoeee*o*e**� :., ooe*4®♦geoe*eoeoe.oee®.►o®*.. .� -. ' eeeooeoee0000eoeooeeeo* - - - - _ , - e000.eoeoo♦ ® eeoes•.eoosoo . - 1 :•eooeoieeoeo . o!o �::. .. . _ _ - - =� o oe.ee.o®ieo �e + o.*,0eo0 ::'- ; r - .. 6 r=� eeee� - - w ^ �oe000eose®e ��oeoo.oeoe©eoesooe•o•o••de•e••®e.; .�o - BAw _ - _ _ _ oeooeeoe40y 404 ooeoeeo+oo. eeo®e®oo - e�o�♦► 000 .♦ooe o . .„ - _ » _ _ . I - _ _ . - �, - e♦• .. 0000eo* �s4e4,ee 04 tjp - - 18740 Plate 1 : Wave Windows _ N ` '^~ ` ,•-• ' p'- . PAI • /7',--:'-': .- . 7,\ I • • ' ` • - • . • • ',-- ' � � • . ` SANTA MONICA ' LITTORAL TT[lRACELL ' ' - • '` ' ` ••� ` \ ` . ` �~ .���� . --, i "c\..,,(..:L7)(44111,2"'`e-ls =�� `-- -._ ~' � '~' ~ -`` ' '~ � � - = ' � ' ~ - ^ ~ 2. ~ - ^ - ^ ' .. ,„ - P�| � • � - ' - SUB - CELLS .: .---„,-,,-:,-,-7 _ . - .. .1 Mt . - - - - ' At.. ' � �~v ~ - ~ �\ , ' - Y � � ^ ^ . . ~ ~ � . . ^ - � .~' . ` ' , ' � ~ • ~ . ~ . / . ' ~ ~ ` . , �~ / , ~< ' ' , ' . � . ~ - ~� ~ ����� ~ ~ ` ^ ` � SAN ����[l �� ~ ~ ~ � . - ~. ' . . . . - �� PEDRO ' - ^ ^ ^ ^ ' ^ ' ' ` ''''-'\'''''''''''.,‘"4%0",..- ti„:„-,,,,,-..'"-.„47` ."‘ ~ � .^ . . . . � LITTORAL` CELL ' � ~ f! ',.... . . ^ . . . . . ' . . . . . . � . ' ~ , � . . . .. . . . • . � ~ ^. . . . :'." : ' ^ ` ,-� ' ~ . . - . ~ ~~ ~ ~ ~ . ' �° . . ~ ~ . -� '� . - '�� ' ` ` �`` ^ ^ ' r, '��`� �� ���`r�' .� ', \I\ ���� . . .- ~ ~ ^ ~ . . -' ~' ~=~ , ���� ' . '~ . - ~ - . � ~ , �~ ~ '- . - -, ~ ~ . ' - ~ ~ ' 0�. ~ ^ ^ ' _ ^ ` . ~ . � Plate 2 : Littoral Cells 0 I:'. 4117,�� �/^ f!e r :'J,`'1 i•sIF'. ;J, r� ..�._. <=�;• ( !: ti� '... it• r Y5. 4:. ..' ., :` 1.� .•./� �.. ��:��• S.,' �,. r-t •�•n .:',7,... ..,•••4i;•N ......r..,,,....,.:4: ,-J`, �7•:.-���1p �, ('':•... ''•• , �C " s ..4.`� "' r--• :::<r L- _ _��^ o-. l�, _ =F,om - '-- -- _' .t.=- �---- •'iia, _ ::r i-4--.,--.„ „'; • P`. 1u � ` t• c,^�l`,. u 4z7:14, ,';.'•%:-.,'_• ;'.....::, '�:� Wi; r: - t? �c F.. ']�•s I!t '`. -.- • , , ri vERo `\, '"'/• c;. '. r', 1". •„ 11 O �^ \ `` '1 i1” F. �c `•S� ..:21',4•:•......1.13.,4011 °Z,`- S F^�ni• ` j'• • •e a s'1i•.' I i • cJ / •I �+.•' ' a °v ..e,:..-s.,r ' .. :;,� `.=_.I -a" �I, �"R"%'A\ ,+,-`.";� !; .,g _ ; �i:• ••S�r,I' PA�� X11:"., ,� �r3 `: ,, Al!: t. ,• `,` 'r:,.: e*n",.: �4 • �! ../`i.,•/' •`i5Jo1(�:\.., •.4,�':i �Lz.�: �•Y - N .ES v.;rlox�`����i.••••'�•t�; F•� t ! fi• F )) w L: ) Vii+' rr •'• y+6 •��•�e -.,- ':-o • C It;."...vie!:. i; ' . -e e�I. C ^`..`�I•_"f). �.�/-+,.t 11 :-\'�?+;�.; �y,4 ,...-.7/./..:.---••-• •N +f+,• ',; •Tit ',Z.; •:,1,1,4', ": _ �r ' ...•" \ •'••Alai. ,: 4 ." f.• • N c ' .may 7::::.. _ P�'�s .uL �.Jf��• ••lT�)r t. f'. `t'.•;•:;,..:•,:•••,;•114,..••,'!• • �°''i '�, .{^iy.�l _ - -7.✓ :. «w' \� •;,�•,.E• 1 1 ,� .1 •J Y ..� :tn //• 1 .\ •.,,.\. ''',....V....:39 ..� --7:1�::,• -,:::.,-.''. '1( •t• t C\----I---• a..� i ( • b '<'r' sl \: 3:•t' .•...' ,"••-!' I;f.•:.•1,i :.."•trE. tt. �a . , . ^''• r!', -' 'i•'_I ': :S: • r \,�. . ••> a �s G p� •_ •y t: $d11iMC ixi7F,, :•a\ .�4\"�';'44,4•3'...)....4....:„.....-''-"......,,'''s ^L+.. ,� ;e L. . , II.•. t .' '''';';••• • I�� ReIHnZ HP 1...' .J..-,‘" I�a�.�r' A.>.a Ar•."-`.�' ', _y, .. 1'Z..+ \ ^ -•. tivv\1 4 �`. •\'r �`• I .••�� t • n-,.??' 1.1:7:.:::'�3'� ?I /• 1." '`i.,...:�4.,..:•-_!,+y_" s-i'ra t:, `!f y C. .i'� -•• _ s 1 ,i t + \, 'i. . .....••••4'9I ; S. . **Z,......7.7!'..14.4, ^ • •t,' y-„,...`' •;-'^...-,,,•`0.',,.:::' •�`I.N "' .-,, 'vq .:l- • •1`,i •1{:,,... II / 4. .:'1 1• „�dll, :` �'1 �`)�. •�• I. r!:��, �J 1 .�'^:`�:''.r t,�. • �A :,-....7-1".4-"". .tck.: ir:•r�.�;i''1' ,�•.._,•,`. ,_ .•��• .. ; /. •`+ . t.., .,:�1 ',_ •� "ri • rr K,• ; r • .-'• ":: ' `��`3 r' '. ' , I .r £ a a l:' .-�a� V!/.ss.. . -. °1�..;a?`. ; , n•01 `'r:-.. - SCJ. y :\ •', \�•,iti: .%ter� i -_-_Z,...,.., c 1 ,-..-..4.,.--N, fir' /,•„,...-••;•.-..., Y� • ° .r.•a l.b. ?i 1' .� ,. . • • • • - ntwwn .,'�Y�� •7•••%7.--------' vim.'- ~ '.- ", � :1 ..f.• _ .�_nj,.:` A'1°_,Z" .-t3 ll .-- r aid i, b , j • • \'nett • r-,'.. ' '..• 4♦• 'Wm a ••.;5•40:' '\ 1 • ♦; KaZa"i� kk)' * _ :-__-,K:.» ' . •1r- .;„Y •c^1131 I. •.F�rri S♦ I / ,:C w_ i s,.i�'',C- g3VAt .• k.... --rte '. ► {.• • 1 .cG�.'e�"� ♦.1�� rte,•is-•;ot -.... I- G I ,� :y, ,• ,,3,..,-,,,-..- :fro"�S).4•14,....7.'m i.L.�ti''`,% ,�}e'�.r.�,yl'.�. _.'�'."..."r'1^� `� 1 � ,••i1.:,. • : Ia. :3•� ,k,• .ja•'. ^, :1 O • rj,./ L•T: it ! • ....--7-17••.A s.t..?.......,_CZ - 4. "! ' " Ii"..4.' s" Srr 9.! c • .- . ''S ,::✓ . /-•^--"i-,. ur i.. _"t�, 1 i '_41 000' ;,.,. aI -. �� _�•• .; � 'J . : '.��i �:1:,,--�.;... .e"n ,,,•.-V5 .5....:› ,�iti 11'. . -. _ '..�, • 'Qy 5' .1. +E� .' i' ••f..... • y.;.•lf _ ma y,., m8d3cP9� � ,., G •� "/ •BALON I ...`"a '� ° ? •`ig, ,W ,"4 M�•r %. J'""il- •r:rI •-.• .4..•••1:.. EN -_ .-_ ,� 5. 00 s •`.7"1,,,,,I,) .111!"%..r,'. 'pp 0' .�.. ' : ,..� .� . // ;.: • i -,r•.... gra 0 ,! • `•• ////,//,J1�/ • /�//i�/A/ /r -'. - —,./,y .�, • ;..+1pi'Tc.- - •_ :. c 1' •11r�_.'i.l•' '' 14 =,--3 I1:41-. - /�� W / •/% ''�- I '1.0 .1///I• \ 6wAU l ,-mow �1,_y'ay.. 'i I -31:41-.-4- : !!, .. cr) Z T,'/'J A/` , /' \' e :.✓��'`• t:...**--*k\''....".•1 ,• ...t•(0,4="..'T'''.....1 —` a.t, ice!'' OJ ♦ .CON T/* / 2. 0°6� • ....-I�a ,.� t'ss-''w t .-. .. ,.r -1,-T.:. i•-• ,• 4 /LiNit Q/^. _ \, • �y ' 'Hca. .. ..:. , .. • LIMITS OF CONTROL VOLUME / j • +e�`Y °i ;''. ..1-'..114411•'••••--4"..!'"c11 � �- er •� ~ 4.. r. r'.. G: I S - 100 F T ML L W CONTOUR %LiJ z • �. :, ` - •..�:�...•.".�-� - `or-' FROM LONG PT. TO WHITES PT. �••�.•• /� ,�; '• , . � �;. . s.�,>'"`�,lc - .'� r' tte 79. 000 • `�- .. �. ;�. ; <� Z ' ..., ,r•iatita„.•• W. .........5.4_,•,..,&`.,?'•• u •LEGENDS / � .��' cti ''.'�: _ :-1-.:J, DRAINAGE AREA BOUNDARY •' •° / OFFSHORE LOSS AND PT FERMI N — - — - — - — CREEK, ETC DOWNCOAST TRANSPORT • DRAINAGE AREA NUMBER 4. 000 — AMOUNT OF MATERIAL IN/OUT OF SUBCELL OR CONTROL VOLUME •89. 000 AMOUNT OF MATRIAL RETAINED IN CONTROL VOLUME 8. 00 STREAM AND BLUFF CONTRIBUTION LANDSLIDE LANDSLIDE CONTRIBUTION 1111 146. 000 • Plate 3 : Sediment Budget e ,.-„Aye••••,..v•:2-b.:,:•,.,„ .•• •........!1....-3,-.',,,..,,,•: ,:s.-7:-:'' ' •tri.; Ill"; -''''''' ' ' ••"1---e't\------1,-- -ur---,-;".,'•:%.4''• •••11... el ;- : ..,.'4-7",•el-. A A ,,,ir.,..,,,:7,,,......,.,:,...„,,0„. .... ,..,,,z........,......„..., ••_ .,,,,•,...._......,...,.,„,...,,., •„...,.... ,..7_.7 1 . , ' ' I •...' • •,.?.r'-6,----‘,- - 1---',----Y-r..."--•••-••7••.11-.:.9J%1-4r7--•:-',2!1•t•:E..l i.•..••:••s7.- -• • ”, EIN ••• F.r.,,.,-• :,...... ........ .....,_, - , MLGE COVE % , r ' • . : .t ',-: :: ..'4 27)-\-'71)-•"4,.Z.''':‘•: ...7! 's--. ''',,,,.'• .N.i.. 1 ;'.:• 4 .......:.•[4.4.1 .••••. '. IM • • . .. ..,..x,.... .•..,.. ..&z......,:fa.:.a-r,X,;.,...Z.-,.•••"7..".^. .7.":;.......'.'42...:'•'•;':;.rt••••....;: r.A....\',.;^,•p.....,,•,;.;::•*•, ..,‘ ... .N:,,.. ...„,..f.`,..;•.....1-!"...........lr''it*H.".2....'d...-k..'"•!•.;77'' ••":"';:::7;..;:s..:1^••••1(..•'.77:1-'''".- 1:41:': • , '',i.',1 14".'... • ••• -'• ';I 1' 1. .• ')NM Nan'', a,. . . •,,r-:2J; ', !!...., :• "'!--,,, .'•-• -7 --:--••• •••• ••••4 1•••• •. •• I ''''•. • „,...,s,,,r,,,--reL--,,:„.„)..r._..,..... .„. .... .,...e• . ,_.,„....z,--f,„'...........:..i....L. , ..:...-..,1•..-.... ....- 7.Veaderia s,',. -:.• ,..,- ' . ., 1 L ''.. r'...-7...1.A.;'- ‘""L",:.:• No,..4,-'1;:i..-• .:: J,-.. c' : f ' '...••• .„. /0".. ."41,:e..- . ...,4--.+•=1••,..; s''';'"" -•',' . '., ' pe.‘,.., t•-•-=',„:' .'• • •- 7-,. :A.,. •••..!•'.• , SiV:... ''•----..--k.''-'17-4.".. ..-.'s :-,..--H.'4,-;:-..:"..:%.*"..:' .. 1 ' '..0,. ,r-.-,"-- -- •.!,......;, . FLAT ROCK 1.-,!A. -vc-.4..,7642.t„...,..4.. _- ,--6,....?.,„..,„„,_ .1.-4.4-01,'7:p.49-77t,j‘,..,•;:,,-;; ,::;7, .";±;.-.--7 ,-1...-T---'it.••'-: .'' 1 'ii•i••iii ' •;ir•. -1-&i2 , "--,.. ''''"• ..., ji4 ..•' '• **- - ,.".. .„, , . .." '.'.,-,•••,::, _ •/ - •••: .','•.‘i' .• -----A•Tr.' ,-,,, 'N.:•'"-'• .....•-•- ••,21*.:•'4,* l"'".%, , ..it.;",' r '.-------,-----:-?,' \ .; •'•••••....,... ..;. •-:,..mow :,,L., r r.-•• • -i---.: -- .-- -----.7.c. -.---.•-•••-:,,1 I • .....r .-,s. ! ••:3 1 r• ..,•„... :,:i•:'i ".‘ "k.•••••,4.:.'••C.••!i''--1 4.•••,\(.--.,..,17;r•'7..-7:-.7.4.''''•" .7:-.....L..) .. i .•-.• .-'•••';..!° • 4 'e.o.`"P...,-.-•:-.: 1:-P" r'-''''........ '-:104:;;;;;.•-':-••----;—•--- , 1 • '••:: ..--' : ''.'I '..'''•'.: '., I •!,-.."-:--- • •-•:. v.._....;....:L••„.;;,,,,.-$4:.:0,•...:.."1‘..,',.....- --‘,.,.7.:., ,, i:....,- -- 4:77' . - ___•••••, ,..., •7.,,-";*. , ''"•-•:•:; -,.,k 1 t %.1.!...,.;,......„. , ---..4..1-cimiia. trat?.i.t-.'4.-..„1-i.-.'•'''--A.,-; 1 I.!........• ' .1,..:1'..77..,,,:7-t-v:',•%Z. "'""771.'7-:$.51iltigit' : .,, . i.,...*..:... 8 I kff C.t.,(,111,.:../..!'.'-/'•••••.rt..4; •:•••;,4 Ns..i-'. ..1 i 7-7•-•:'::0:"-t: •CcI'Ls'.1'4.0:.•• .. .'::.. ? ,..4;i, ': '.1-r, ..,' ' ' . --'+''''''''''-r.'"" -":7°-"`•:"•-•••••i .*1.---.- ..n.....-...'-u:Trarbm--Eri;-I--J.b.,..;:'''' • .-,..47'....'"J f:i:-Z,l';.:'"1.''%21:',I,C!'"7:•.1..-:-.* :Z: .).;:'.. ...ti:•11..T.'...2.... 's. .,..i'• ••:::', ".;.:-'••:77-., li'•••:•*:':...',' .•.,'s.,...'."i'*,.,'••••',•••.• ''• '-.'.... •'.;i5! 141-•--. ".•••, i7(7). „.--• -J....----- •--•••••:•-•-•••-: :.:.-.7. - e v •••;,=.,>-•• •)•,••.'''.7'es"r. •'.-•-..J.'.i:',. "•,,,,- 4';‘, ',.N..i...''''• ....:''./41,7:-..'7'.;•Z-•-\.,.....--.4' 'N.i..' : •• : .".,7; I• •:jgr,./: .". . "-, ' -1' ' ''..' •'-''r., .:: -.-.. ....-.?_. ..-....4 -..-. ••.. '- • •,•-•••-,-•'...•.1.---.',•':,••'..t.;.,•:1""••'1'•.."1:' •‘• .•'•, .:..... . ..,,,,5/:•"?••Ir'laTAW.9...;VirlE55•11-...11:13trATES::P.17.• .:::::,,••:."1.5;,,,, ,-,:r'46,•,. ......:1'`,..r.. ..,,.•),_.".,.......1••.51.1„:•.•, 0 $\,‘ , 11%,%fc,i,..1. :.0+.53,...,....7.•,' V: •E . R1 •D ' Ei•...5 4,- ' ...: ; ,1 • 4.- 1 0\" ,.....,..9- /4.;• ii...,...,,.,.. ,r .•T.: :_.„..• ,c;..,........•.,),..., ..i.„-..7,.. ..,..-4.,,,,,,;.-4,,„...,..., ,.2,.:4,1•1;tis,g 411,270,,,.).;:$•1•„.1,...i - -7 , .1 ...:.'".»,--- -. '-•••"'".71--- '.'".-.' .ir ,:‘' ''''• , 7.7....:::7............. .. . ...,, ..^.!, :•...,.... ••••••• . -44,:•••:j/jeil.'"•-" ."./ 17 r-,''',;••-;.•,:'74::;."••••Ni'li:7;1?'•?:,.41''' ,iF;•' ''`... ...'..--) i;: . .:•.".eC‘‘ ;'•4=-''''' :V*\-''' ''';,e;g'!r•';-'..'-1,:'',..'," -,:s:i.-_i-.!._, 1: ,"---4.t,'.....,7''•••.:•,- .--.-•Li': '!"" / , -.. .. _a......:._.-ii. fgt.:::''..'j'. .. :-.,•1.-... 1 ..E. :.. •-ti re,i'",.."':-:-:i ...:,•••••'-';.'• (... "':' • 'im 7:.---•::::-N.,,,,,, i',:-.j 4?"...,.;''::-,:k..4:"-',.. .";..tii;:-r::.: .:,';',4'.7,",-.f-------4-.4„.1‘,,,' ''',,,,_..../',A.'ilf,..-.......;..,•-•-:-- -". - .'11'•..1..1 :t •—•-• -...ungc•t.i.....,•=- .... ''. i •.! 't .' • ' 11.1. ;.,.. .....,......7-'271i!'Lli'711--''t -:•44,:,•!."''" ''' ,/,4-1.4:•,,, ,,f ,! :a.,\:•.,•• ,,.,,, 1 , ; .•.••• 7 i, : ..,,/, \....,r,.1......",•:f...--y.,•-•-•t%..)'‘ i ).-- ,.,-;:,,,,.g, '<•t•••;•,,`N...Il •,,,,sf.'-''••,-, -7-.;--.=-"A".'-" .-'' ...: „...,•:_.......•-".-..,„.• ' .z'.: ; • . .• • - :.::. ••,. ,,,' ';'*,i.k 4. :••;).)‘••••• • •'•:. ' \ •• ,-,• , -,"....'-e:r-:. :,..;•, •:-.?•• 7,•,,, -'41 f, • •1=-----''..:..^:,,-....• a.' ' /.., ...r.,.... . ...., ....1.-.N.: :.,,„ . &-X.:-..„-'•••••••.-• .,.. , . ,, .1 i ,.: .,..,... i_s---- :'-11 ..:.4..;.."......,,i7,.1--, /'•.'":4.,.,,,,l, ,i,,/„.;.......•...z:f, ?-"',....,...c.(7./....,k..b..-4:7„4,-...s,T, P0.1•:-.'. :'\ -. ,....•- N.1..:5•••.,.•,,, ..,. .,,,...2_.0 • ,t,!:<,,, , . 4 -•• S .' :,..,:l s.th. ""•--.•',','"" " \.*,,.: ',..:"," ...L:.' '''''.,ts 1Alr", "" '''''• :_. , rjar.,:tx.7".4..!,.0:c,et:_.•,,...,..:77-7,,t,, ,r;.„,••••:-..74.7,'",11.:1-.,.74:71,7_,F•5;"5.:: ' 4ii..,...-,:. ..,;,,,-,,.7 .,)r,s,.... ...,..r•:',..."^-57:/: :, ...-.1 i-:PZ\• ::•.,--....-, .iii...,..1._ ...,•,....._.,,,,,..,--, ,,,,,,•...:..„....s..,,,,, „4. Hir,,,,,,,_,t.„5._ ...,„.,•,,....,' 1.-='-.1.-os taMtbits 1-,-,-.:•,..•1 , ... . . _,., • , . • i ' . •) ,, i...,-,n. *e•-g, ,. ..i ' ' 0'7.-**","'`. .";IP,isg:it),"'s= •'` l• i '1''• ''..... f...'••;'•••• ••'-•` t'./' './.'...',If•• -•;:•(•;•'•:-.... ‘i• • i. • ' ' '44..., ',\'!i•;`,7,..i•....'''r••!' c-'. •••" "'-' 4• 1 ‘ -•'''•. i .A kt i,..1.7,..t...r.... r.: . . • :,- ,t,, ,,,..,,•___.--.),...1 ,•••/ .. ..„:„..:....,..1;i..,4•4''4..,.‘, ' ',.. •-ji ' •••-,..4,1 .!''O...., ' ,.;""..-•,;•••..,•:*•:•. .4 • ..,,e.. 1 ",..-‘••••:'t ' s - ' •.,-.() -.e'; • `,. ..;-;•,..!:. kr---:--- "'.• ' -, ti,• t ..,•'''':. '••. 7-r... .-.: 4`."e- . ' .' .-' ; '7s' 1 ' ' '"'" . .,,...'' ' ,•''..,' ' ' '''•,,' •-•....\*. •,•••••.L•4•, ef•••":*".•T :••' : • '. '-.1, n! .•.,•t •''...... i• ft. ''. '..i' ,...sks•4,,..:‘, in.,: /.• •••.,• ?.. t,.. 4/ ''. :•-•-, if•• ,. '•,,.....•';','••'"-:...;I.> ),'•• ..... ' '.,........ .\:•••• ••,V1.......0..'.,;!•,.z.,,!:::•"' ,...:•:•&%.,1,C..1.;•1%.•4,/::', ,..-.7;;•• /....• •3,/." ....A.• .,' 4.. .•• -• • 4,R. : ,,' . ".' -•..<'t.Ai,e Y 1 ,..• ,';.• .,'•''" ;S,;. •••'!X"' ..t., .• ', )•• .4'''''• '..e.:'111 °.,1•'Z ...,?.= '.4.:•'.......-"...., !. ;1 1 ., ••' • •• '' •j..' ' ,ii..."' •• •-•'' i'.1•,. ... .. ' ../:.%.-1 'es ' .•' •'. 't. 1%, ‘‘...'`'-‘ .•--''''' V"14%:.''',• IS;t4'...f!.-'"..;;; l'`,.'\*.f"'"-••• •-•;: ' l'''''" "(7.1. 4..".....: ).' ' '..--Z.:......:1-s."4-P- I.•..•-.., ' • 7.4 .i......--E2:1!...:':'• ...- :."•-:i: -......-••• 7•• ..ll;',7*.-••,-...:- • "r.- - . .•,"•,`N7,..7.1. 1 ••• .._ '7.'...t17,.‘"-Tsc:••, , • • , ..".•\77'7-7-7.•••''..•r•: . Zr 7.':;.7.'"."•;,-4..,..T.t.1;;Irr."--.. .,..7,...77' .r•...0.• ,••• '', -.7.7; -7,...,7-- •,,,.-„,• • P A L 0 S V E R D E S P T- ,... . -:•4A,,:.-'.4.- .,--•-\,..,-.4-1.:: ', ...,i,...,.,.',. .., ,1-' • .`',.-.. 1 4-..ti. * ..::.-,.. ,--, -..-:_.•••• ,,,,,',(..5.,..10:;"'i-"': .......,.'.• . •,:i.,,i ttik,: .':'. ( '....1-5'''40,1-0? :-.r• 1 ,,,,'^;,'"e' . ---'7'..- -!L 1",";1 ,,ttlVi':11.,;.:', %. ", L•••',... "1-,-..-°--ilt-1,. :fr.'•c..z. •••,..,•.. -„ `\:.:.--,,- \;‘• ,•• .,,IN A-,•,. '.- ,,•-•......;, .).i...q,,i ,- . ; ,...s ...',.sN--,•-. ..--.-,. , ',-,.,••••9',,,,zv.•'-..;:pr".•7. -:-?t,':'..'•,.. . .:-‘t,A..j-')'.1..'C's-.Th•••":,W40' ' t.t... ''..., '" P''..'•;''''' !•. ', --; ''...:'':',), .1%.•It'..,:t.',..,gli'•:•, • i'...' 7 ..•'i.;:•' I '.i.c•ie.::•-1....'..,:'... ,,':r 111111 ''',.,•*.+6•'• 'i..>•,,e-';',:.1 i r. .r.---•••-; f.,. '-, ,,,-.,•• : .',A,..--4,'•' •,•.'t.' ..' ' .4:./. P•1!....'.:'--, -•/-•'..e.......••-17N7.•.A4C,•-•'''<1 .'.....'/ . ..7.,,...., • ;•• • ',,, • '•,+'•.'....,.. ••••,`" • ts0e •• • '•4..,'•.:','\,•- .r'•.."', ••• '.7",• '.....,'... .. _.- ,•'. ...""s. .... ..,, x„.,,,,,,,,,,.0 v •`.. ....%!.,i.'.'.•..".:•. I:..r.:::1 ..11. ......--7.-i:-7:;.•al'..F..4..,"'t.i1Z.:-..--'/.s. 4.Bo. ,,____.., A ,.:.,, . wv....„. ,..., ,..,j .t, ..,,...,.. .......•;.:-,.,•nr.,...,- ..,'_,,..,... r...6,,,f. ..., , ,..- .-7-•••••,.,_ ,--.,..,,,. -.....-........_ ,• i ,t_-_,....,..-.---, • .....A__ , ....„. , ...... ..0,. . , ,....,. .„. . . , )... _ i....... , , ,.., .., „ -.. . \c11.`1413;', .. .k.i,i c v, 7.Z.- f..., `,1k....: tT'" • I... ''',:.''•ik4-7t. )g,e;.",t'''''•;./ I.., ..-,'..?•''',: '•'. s.•"4'77) --''''": \''?•,i"....'. -.'..'Z'c.---.;,4‹...:7' '-`4 11''''•- ;."•.,'.' ' ," •-:.••'....:-..1,51:1*.; ..,- '." .:-.."-:.:• ,-.- '.• •";.''.'S I'•,:'''' I" - ! • -. , .,:'‘.‘•;,. ''' ' 1' - 't 1'•!` '• • ;ft:0 --;lits.,.. '•."---77.`-..."'ir'.7.."..Sce:•=.'"-'7,7",'" r ,',P.'',..,•':-:'-,.-: -.'• --::-;'•:..... :)---.1.•,"' .,..:;:').. -a....,.J'--,':. .•"",""' '2 n''''S'••••''• .' •e•-••••••;,.';','•:: •.., 1 '••......:!' t s".•••' .. .-' .--.-- ' i 6 ,L:.t.;,,J.;,o'•;ie:/ . /-: ',.„ -1 a s• vo' ,..,/=.,.i.S.'",t. • .".!• '''-'•• - •-••-•,,,i.1 .."''t- ' '',ti'•' '--.0.-'`. ----:'''.-" . .-4si:•• .----%rf•''.-' *".1'. .:-•'',',I'S" '' .,.4 '-.. .,:, N''.-:,;/!"."-..„,2!.., ,,.....'. '••.0-4.„.,‘„„11-•:.4,-;;)24'Ft-4•%4-: :::.,, ., .,-'.,. ','4,'; . - ,•et..., ,.••• .....P. - i •st..: .... • •-.'..- . --.-:i.. ' .:....;-`•,.-i • ../. .'; ,.:. ....-:--1A'i„ r,. .....;'.-.'••( \-: )1 ., ,i,,.5,,•••••., .:,. *.''. ;I-i...;.;;;..%,:.,:?'" .: ::::;;e.•._ • ,.1 -t: ..• 1. '.,:- :'771,/./....'"?.. ,;. ' .1.,..\." ,;;;\;11,..:;': --' i:"..`_:.; ‘-. ....r ,...'"''."•.- • ....,.• ... .4. ... i 7... . '••- .• ••,.-,',.....:. 7 , .:,,>`, RESORT PT '''''. -.---',- '!":;11- •t.1 "....ilier.•k-F.--c, , .1.• •-.,............ ..4 ..: ..... .• . _ , ...r. : • -. • .. ,e, ••':• ,• ‘ \.I. ,). ,y •:.•. 1"....,,‘.. ...•;,...7, 4,..r....,.:.,....., _,1 • . .,...:77 , ....., •;''• . .. f.....' • ., '.... -. a-- . • • • •,5 ./ /1-• • •••,.......,.'4.0 .5. .• • ' '• ..,5. . .•:...5: ...-.1.;,k,'... ,7.,' -i,.. -41-"-•••-"rf't.7. e. •• .5 I'.t: • ' ---• • t-. ......I , , i „ ., .._ . .•c-,...4--, •-,.„. . ,4 ( ...-.,c, ‘. !,,..,..::...‘. s .:.. .:t ' ." '' • ..•" •' ‘.`ovt70-•-•- r-t•-,> bi ''--. '..,. 'e• ..,• {• " ' •- S.' 'i•-- ).•2- "s\.' ' ---'t • .'1.' ) 2 , "• . .,• -.4.\ ' ••••• ,.: •I'''...,Ift.. •..• a,• i.-..'116Uirig in-rw . - :". '.."•••z.':, `A,‘:';',f.i..`,'-'. •r4--4:1 -'--),•;•'•-•-•-;• '- •-.s., '':*-,:.;„;,•''''...7"''...I ' ''' ' 7 1 1.••• : . '• 60 • ...„ - .. 3 .1 1.,•'. .?•;•,,,^d 1 --''!'..--.t' •.1.... • ''. - - '-'''-' • --=• ottft••••••'/ 7 . 1"f '' 4- '.'-•..,7. '..t•'•• . , . ::-.... `-.. -" ..'...• .2..,.'•i,i •.';),'„.i,•S'•',.-.,....,.! .---" ,I,.. ...,,•14,•;..k....i',j :,c,,'----;:,,'. El..,,kie.:.•,1• t . . /1 ';. • ••• ..,' 073...*on .• .,.L.,..11 a..:.•-:&1,1 k..'.•:' : \.".,•''..'..?:.-.,; ',' :,./,‘ `.1.,'.:•eg I'M. I. :-.7We 1."....',...':.._ •. • • . .' •c - ;•.; ,,..,•-,..,..,.. ''..t:.,..‘:•-•;`.. ....:.‘7.••‘,...!•r7::••,;..ti..•;. ,?•••'sr,l,ink.:.-1.....4-..., is...1.1,'_' " .......7:-,A,11..................,:,....1 - . .1 ., r,, • ."'e.'•iVi!..1;::k.,.::"....'\...• .-\\\`. :.. . ' . " a••A- :, --- v...; , , ........j,„....,;:i•.717....;;?. 471--7•H-2!.--11:.,,•-• -- E'. '. . "..,. .‘..,-..-,-•..',„•••••••.:- -4..• •.: -*-..,T ....31,•,,1-1. ..-'.....-'s.k•1.1,---t---- :,' .,4.....--,,...•,; •‘:.'.,-......,:...„a 14 ,, *•::'•.......:::;-....,•,... s' : •. ",,,.:- :: :4?..1. .'''-',...-"'t \t•••'..-S, "-:'&."J.-.44 '' 17: •' ---; :.•--'".-.1 ' '' •/ -9 . 1\ \:\•••••••:7; ••;::::::.s.'7‘..s.!7‹.e" •-e. I -..,..-:-.' . 1,..,:t!.... i.:.0.!- _,,'•I.. . ,f) •".'2..:::.....' ..:'tir'N' .• • . .." ' :.1. •''".<.'T;,':.:•••• :'..4-..,`.... ;:'''..14.1'J'4C)1:--(:...„ -..-77:".":;:'''. ...i-.....!<:'--.41.-''-'.14:-.7-"=::::::;••-• ''4• .'/'..+ :- -,-,,.<1.... . • .' .••:.:4:::••7 4.''• •%, ':' -'i I ' < \ \ et 3 9 1 ' .,', \. '1.--:',....,1, - :3", •••." i'...' i••••;''''-'i° ' ' ' / .... -‘;•...... ..-.7.'4.,%'',.. ". : -:•••••. . :;V..... 1 .•'".''''''/..:fr-4,....r. '..g:•'' '';.: '...•..r .;'...,•,.f.: `l sl,";N.27.‘o;'-'1• ',71},_•.;:h.. ti.. .1, 7-..•,, .,:t i"i,„ ,7.*.;',1k /0 4,10''.,.. •-•;,:.:f.. . .1.."' .'• ....-.9/ • - 4-, Ai ..:1‘ ,.:• ....tc• . g'.. . • •••.... %•ri'.`.',. •••,..•,.. , .,. • ••.ia'e'ex;z.:L-..-.2-4,•,--,--4.1,::.•!<..,4' ...;, •••• ,. •••- •:,-.^..e.-...t.Zi...='..p I,.. - • . : ./47 •..'::-..- : .•• "•'' . N:'.... tV'tN ..,/ii ••• ' •f..----:.7.7N-4-•:•••"•••• 'l•'---•--.'.. .7- -'..... -....'', • ';';' :":"';• ... • ,V, •••s`t ••'... -.!:•., ....V...•••-,:....e••,•••'. ,‘,. ''''''^_::: fxri: : .'..... i -'..'vt-.,..: i....... . \ -I. ' ' '.. ‘ ...11-","",%. g'•,--,..-N--?;!... ... le' . , ... ,-, • •• •,,,...../.' • •••• :. -::.•,::- 's- _7.-.4,;....2 -.-`P'•:.,:t,,,y4- . 71„:;,...J ' : si 1' -'t.-.-•-!'.• •-'7,„„f(t.! ,--.'4: : „...77. . i's‘•4•.•1,..!• 75'5'55.5••• / .1. . /. ••••. S., • .1 .. J • . 2 350 \ '4', , . .....---7-1-,, •-.. - - • . ...si: •. . ..tf ... . .":,...,..:„.-. ...:.• .: ...:—.::••• •:. •-7:,--•:::.:.,,,••\-7--,.•-7-"%c--.4----,:.'--."-:' 4,17:." "" ...•..--:.-.7.T.: ..,-,,.--".=:":"-':',1 -*rt.:..'".....:'.--- -•. , . ...4...,,,,, ,,\',,,,, . ,-----.;..t:':fr .\I i•-•'--'' 4t 4 -G••• • -• „,•.• ( 's tAtr\ ! -. •'. ,'-'4% , - • - .• ....,',.. .,.::.::%*::-....••••• '-*1 ,4(..i.•• ...?Illag.. !, ... v., ••..,,i....,..-..,----..: •.:',.,.. :-.....,% .:::;;.,\3,•Iftr,tile.7--...',',. ;7- ' -•r-t-• . ...1 . ..11:• .. .. ..,,,,.... ..,6 •• ... ...' . .• / -- 40 .,Zi.....•'•,:•,- . \'• # .;..,‹ _-.4!11-t(...""211::,...lii.-.-.4'....7'=.:11'.;;;II:I "•• '''' ... -:.:.• i• ........•7 '-7'. . -.,?:-/ei..' ,.:•,,.••...s:-.:.cf.';.!..,•.'-',..P.k.,:,..-: ,r .. .I....A., . .ai:iti,x.. ,.._.„..,,,,,,,,,,,,,,----r...-;.—,..-__Itt!c74:citt....E 8 .. ., .. ...„„••!(..•;„.,••••..•••• •• , - .-- ••• .,..c..• - •\ 0, - ••- •_."--, ............1.4,4 c.,,..... ,0.,;..._ ..• .7-".: S.''',......'::1,::..... 0..••• .-7'''... 1... '--.1- 1 tril.'".1.. ''''''''''J.-.'...;I.". ..... ..; 1 - ..'.:7: '4 ''.•,‘;•;iis-9.6.---. e:...(7-....,;-;6',J)t.,,,ifi.L.------.. . - ......._,--r .1.:„...t.:.-.... .....i.f_-_-_,,---:-:-..4..-.:.:1J .,-..7.TC."."..T.'.1 -I . '",gz;,.-4:4, ...-•:-. -,._--.----;,.------/-...rti,: .I:•,,,,----— ----, ,. ,i• . ... . .. .,. -.../ 1....,..ofelz--- ..p,_. ?,. ,..,0•;1.5...• • . . -v..1*....:-.1,;_p-....E.7....s.4.,....:.....,-....,,......,...,.,...._. .4,,.... •. • N ---,.......,...4..... -......„-....-4-•,,,,, .. 4;; . I;;;:.,- . . ... , . . • .. ...t.Pon 4.1.. pz,„.4 ... .j•-• ,`-.•,..' -- :f't -c. • .....--,-,...'i '4 ., • --....::,'.-Z..r..1',....,........4 IL N it-m.:1 , PT VICE ---!'A B A L 0 N E :::.:. ....: ...":::.::: :.--I. 1:-.. 4 -,...'Gr..,4,- • COVE , .- .- ---....,,,,-.,.?..•-•-•,:--, ,4-4.-., ... ,'',: ......--1:i.. ---0: -.•• :4 dr-'- 1. :f: • -—a - -.1-: • -i • - •- .- - * •-% /71.--:-.-,#, 'A"'I i V.-. $.• ::--: fict-.•1:4=-•r-xt,-.-- #--&-..-ecr.---_,.,-_- .‘„.,;..... .;.---,..1 • _ . ,... ... --.....23/., .',411---,. ...! • ck- .••••,,f1r••"",-'•.....:-.., L.-,,a._....,,,,..=...„.:,-,,------t-,,i.---T-r-. :,.... ..--H-, . ., ..._.......4, r , ......z.,...,...,,,..-......).,,.. ,,,....5.„.„.,,,,, ., .,.... „.. . A.,,,,,,,.. ,........;7...i.\•;.,...,................:ins j.:,•.•c r...f.',..:,.....?...2.s.: •t 4., ., '\•.:10,..s.i.4:44,,,A.Q.... •,..?....12....,.-- 7:7......,?.,.......ii,,,„•---:,,:......4.4.,„.4.1.,........7214C LONG FT/C), Ct_ • • '- -- 4-- . .---:'•'.,. . ..•.. '-ltti . -'s.#5,*,..;*'".,;••',..-.....! tt..........Z......rt.......,. -.1.,...,:...-4.,.....,,...-.1-,....... '• -..1:71."1. 41'.:•.:.:..:.-..i...... '.".. • es. 12 . ..... : ..._-- t.•li : .1, •• , ..-: .-.:,..7,:lt:.,,----`--7- ---ii_:-•.'111F•"-t.'-:- ---7.-------.•.-,. ' .-: ' -tt' ,,, (0 1.1.1 Z ('') \ ,t4 s ,,,_,....‘..,.....,,...... , ,. „..,....,:...;‘,,,,4,....z. ,z,.,......• ,„x.....,•./..w........„..„4.•;-,....-, ...... it I 4) Ci) 1...)1/°' ' • ''-..,..'71,-:' ".......",,.:, - '. 31.,..\ ••?1-;',1-1\•,-.-----1',..7.:LI 4 •712.7. z-,;-,T.,,•tiom:•,--•••••••t•.•It.,-;:.- ' . , 1 5 ,),, .,,,.. ,.....,, Is . A....4 ..i.S.A. , ••,..•. sc,..!..•,;-;.*2 0 • ti,;„.. .;,.:,•!.-'...7.7. --,___.........:7......,..,...t... .!.• . '• 4-4.'”-............I', ''••••:.•?.•' ',..::•'.....6. I ..' I' ....,,,,...0. • ,.• ''...1•'•-r.:•%..t..:. .1.7 5 GO\7 cc. •• - II, -, --,_...........4.;.1.-;,_ • ,!... .,,,,,,,,_:...._:, .____,:,1"71.4 ,,...,;,,,,,_,A,_ •, .,,,.., — , A, ,,...RES c' 4 BUNKER P ?,-,:-,-.--...:-.; 40 .-_-•-k.,.?..-..-.--ii„„11,-•: -:,--7.• ... *r )-,"'-,.. ' i '' ‘..1.'.... co . I-- CC - ''''' .;';::::;•'' .,•....,,'•-..,,''',....f., •.q., . .„.. _..:--.. ....-_-::::_ :.-t, ,,....,......-7,---m-7,,-,q, ,•,... .:..,,...., .:.`' -' ,;,..:1,'"'"''''' '; , 0Z P....4 N, • .''''''''s• ' "S.r.':;:,.,.' .is ;'.c--Mt.ra.4.H,".....4".."1" ..'.. .4.4...)e0.?V;k1::.,\;C.'4,12r% .. ....4.•• "'....f.............; ,12 CL (e;IV /\ '? 'N.': ' •47.. \:•••-.:.e.'' ' 4fr-' '-----'..-44"r-"..."-..1"r44-7.."".....-;;!r '-'A"t'''•••• -,t . ••-• -,''' LEGEND a_ cr) .... ---„,•..„.. . . ....- ••••.,... ......,.....7-,..--.:*--..-.....--,-,•t-...-i.....e...;...,.., .......,,,,,•-. - ,.7:'.. :;. ;....: it) •:,,,'-',4,.,•,;- -,-,•: ,`,;;;;-.4.", .. .‘.'k - • '••••-.,,--;"',.4::'...'.i-0-.17...,-•::_-a::.J.j '.; •• • 'Vf,• .:,-7-t '.1..f' \1 „ 't,t,„ '--,---4!•!,4.,. 4- -...,,,,...-.. 1 ...r,.. ,,-..„ t ,tt•.0;.• % !, -, ,,..:, , T Z _"•^•• ''''...4." • '••:. 'X' '''''''''''' .11'."' -'7:-.)'7- I :' .. -.."1F;-, 1....-4 430 2 ,_ • • • '...:'•'N ::;:...14'... :I$:.1.:..0 t•,.....jr:1% 111.1..1..'.,T .._... • '.....ki,A411.,.'i ti :- ..*. .-"-.,•I.3,12f, r'L" : !. . DRAINAGE AREA BOUNDARY N. v '....-'\-....-. ',--..4.1i;'4,., *!/..44...4... .i,,,:'., ,..t;'..it..21,-''..'• . • s>. .... . • ,t.....,,,. .,,,,,,...,41,-,,,,,-).,4z.......r.,,,,,,,,,, ‘4:,...,. ••••• • ••• • •••• • • • •• • • • •• • • CREEK, ETC ` WHITES PT •------••46, ,c.7.1,-,' -w".t,,,...,\• 0 ,.. ..,.........• -.4t- :.,..:-. 1110:1 i.,Z1 ..I : 4 1.',F s.......!'''. ....,t_... . 1,:..,. ...,*tz z:..f L.L.,..._ n rr f:15 n.4 15.. '...1tV I--,g-it‘i.......tit.:.• '- DRAINAGE AREA NUMBER ...."::.cir.,..'...t.::::---. 'I'l ' •• •sc, - .... ... ,,;;..... ... a PT FERMIN I 6 3 1 }—÷ • ST-Rap%m C_ONT2I130TIoND c c '11/ y c2.) S.A N PEDRO BREAKWATER III 2 3.5-v > 13 Lo \-- C..131\ -1\ -\ S \ ()--cIc>1\-, ( c-f( Y R.) •N Plate 4 : Stream and Bluff Erosion v0 N O-C QCO O,? ,� Q. --ji- 00 Q 2 .1.,. 44/ O Z o ;•r..•. :. •002 i. '1:.102�..•L 0.4.4,,6►, ..�, CD et" '=.°,=CD ; ',.: =;:a.'. .4 Co 1 , PORTUDESE BEND `- u p O co O / ,N, ''''.....„-.........."7_g„► .p:. a, Z 1 Y 000 2,000 3,000 4,000 a.a N .. ,. •. '`=:" ~o , 1,000 0 ►_ �.�`, ,.5.. .a 1 .5\�� 0000- ► ,i a .► ►-o.. , -•. ,.•:;,0• y.0r'►� 2ri►�•a%►p/ ,�Y. 'i�v,i�iv ..,'4► r a .►;�a1. 4.10000.,G„a.., „-„+5 .`"- , 2220 fie ..►2..02.2. ,..�' .►..:^^-,.�,_'i.,,•,.r � 0002 ►r„002. 0000 �� ►.► 2 .► .► _ . •ear___,►o4oro I. .• „♦ 1• ►t4i. '• `G►•►Gbi.•o •r%t-. _,ad0.a• ,a.._ ,.a0.•..., \,►. 2.•\:/Q. .r.,,� \7/►.►•!1•0 k; •:'[OG►,O/i ';,,I ` �,��. _ _ -`►i il►vtial:or.►,d �.,5264.210.;;;;;k1 arc` •,a000►�►•.:�r�►►� II = / • SCALE . 11 600 .4,.;',,.P. --- - ., ►V . ► Mao,,a► '• .._ ..r `0-002 2►2►2►5v.\2, ,. opo °,,o►..P.., - - - 2000_ . . .....,.......�.�. _.,'0002,- .. `. .,` .,.:••� 0►i0.a` 0200. ..._.' .. ..•1.►.L..Z4.r..r..' -.►► ::. „2,.�„-•.►q. k - . apo ~Pork...., --".._;5:,..G: .►,.20.21.:00' r \\ ,'-.y t'.►^.►vin.. = ',wiz, y_',►..0ap, :..a..1.\ ,rka0.►...1 . . 1r.►"Itifet�...M:7000►► 0100 `•• " .0OX 0• �'0ii:,i►.. MOW.:,IN :�M0,1 X02 -I\p► f �_� 21.►a�,► . _ 0►a► ..0►papa. `a5a5►"•►t \ ..150C101... ►► a.-•\app►lai::c o,�pri►p. •,p►%►. I �par.a., !►,••.�n.: ,Opi,..,`0,,00,,0,-�.. 15►_•GOr.►i►• p►G•• • /a .ao •.,ar2.: .,,.:,r,r,r.r,. ..oloo. ... \21.k.2• k._ .,, •.002.: \o ,. ,'.', '','.•i: ,� moo p\...,rile to p a..•,►a '`\. 1.p0apC 'OGg.022 O i ..\ e5 5►0p0►.00.05►7. . .` 5oG0205CL► -•► 0051. •1.200 .,,10ren R v.. '15►G► :aerie-vap,,G. ‹t'p.\L T.00rap►ap►G -•.Ga►.'-101,4 Iakik."•r i. /.\ Op •05a50P'•05r '•051.4 -7.1,411t.‘.1.. L.- N.. le .I,2 i.. `V 5► N.� "'04,r // Ora 40 /0N. 1►OO. 1r COC Mak., 10. "-'' . ogle,, Nr 1r og•g J ...� -"NM: �7:... .:0:% ;1 `•.[,._ p0►,r.�rp_ ,la, .. • Pr20 11 y �. `fink, 'i� ooe•.• i►,r•���1►v : i• \i �G �# 1.440. ,p. is O i►-•' •. G0.'.\ .�. a ,► .►.U. :vpr �rOpaoO.,'S . 2.442_.:+a►r ,C I • "10,4013',.1►!07. -...4111,411.4k1.: 0513,401.1 . ... •,are►►h•:,. 1001.A0..., 'SaC!,,Oe.N•40 .,...a..• ,1313 2 ,1313 41►„ J` e ,►�pOriD.O�v. .r►1 � �OriJC .�lOSar00►♦,v ..►v•.. :,aria►i0 wZnry r,:.S ._ • "lar r.. ,�► o05.ar•. ..q►►r ., _r¢ ✓ i:2 ,.� , ,ora,, ...2.a •.,a. VatIN.�.., 51., ,ia: Paar. :•a..ao. c.• a0►N \,�►GC►Ira �•. e. `i►1.:, .-di.7.a. TC.a•►.:;.,� �-•�.�.Iia.►eel T .21 4,1,.► ',} .2005 G.e►\ �'''0.0,20.,' q, :0113\,r 1„1 v 215091. 's02 02„02 ,r, .,'2►►• 1313 .,11005►► ►:::2 aI1..1 ,-_.i ►2. •10,00.•-. Ira10.5,,p. \\ a g, ' ,.Mire:\, q0 POO..p, '\.- 05►tpe Off••'- d'•� ,r�ri•0►5, 'w 0►0G,0.•.. .- ,o►,� 00,13' \-_\►];5` ,L• . 2 .g500%O, ...,,r a- . : 2.1.2,' ,. - .� , %. V 0 11.1., :► , .►,' S..',gip' i.►. ` .1 at* a„►,►arp . «. *iv. 1.•y,• /Pool owe ",,. :assi = ►0.0►.05►p .,.►.� -• e' 2► low", ..i1.:. �G4a►.:,.. ,►r .r ►•,••••1.4130 i�►►r'C► ` d►6� 11 • i•: "►0.2, ...\,Or•aaG► .k 0.p -•.._ 20002 n-10 k' .5aria►►• le fir` 5t. es•c 5 .\.` .,,r .,, ►. 010 \ ., •par ` ►.1. oorAO*,V i ► or 0r,o J•�i-r r v ,.�..:•►: c .v.` a ./ 'v.... ra 9050. ni►ri►°' ►G,00►.o VS `"b® ,51. % ►O -•a '• ',I►gip. ,5..00. ✓4* \.-..-►G 000 ., 0 \•. p00G0►gier., 0000: I„•.-- 5100.:\ 51. .. `50'01320rA- i►, e. ... �- -•0,4•..r00►.ap 10001r•r •. 10M b' ..; iii, , ip..pa�pa09 050.,Clr, r 0110.. i0i►opoai OOr►50.sumo- ►Oi,,.' H •oanoo.wonoologir�. 0 1.,,r •r�: 2 ,.5,,.•0.,05 .5e •-••. 00 .�2. r ,500po• , 925..4 ti. O .5►,m,►pO,I, a5,r1,= `.�.'..�- .0.' ,apo •. ., 100•- .� 21. �. /oo.or 0g. 9 I. ; ,r„ r ,..40, \ ` • 4 1001501 � 2:,50eei:•raG♦.5\i.. 1313\ < , erO.IQ ' .;rIP' 132/1 • 9 A. : ap►er0 -0.02 ;•111.11.10011,0 AIM 0._•,..r S... •gyp.. .arOrOr 111 .2►►, ♦, 104:100 G►i-► I ,►500► -`. 20,1.•415042, 002\7101 .0.1.:43104:40roi 1214.101. '. •. - ''.\. r �,....�e► \ r v ,► 2► . 2135 .. .50' S. oer.o .14'41 '�w r. -.. w�►p.p 2 y 21345,5, 202 000 ..,,orAgei \,,►/\J5, a ammo 5, `R,e :i , 1/,,,►- ,.500pJpi a5o. '• ',,p.'. 5d►,e-�41 mm2►, ...•s••.,,r ..a.1...p„ -pap... .ra0r► var MO.til 'r ,r,1'e\j;4O`Jar b.• 01 ::►�0.-.. '.:W..4017,...,[ 05005. 1410 �\ O.D„ -•.,d.. � NOTES CONTOURS SHOWN ARE FROM JULY 1995 CORPS SURVEY, AND ARE AT 10 FT INTERVALS .4013 a`Oo �a:.,r°o°o °„g: 00':'35`a,',';:51 GP.o312 a ra•.ao a - • .►/0, v-1,020 ►.ja►i►GO► p. ,0r2a 04il) 0G0aG01;a-.. 050.•12131. oS.G..-,5e;02,5.. r.r2e - 25.4.4.., 2..5.,5 .G.0aa411.,,r LEGEND ° •7ore:a :o50ar 2 .,,::,:o;�� ::; , �e.;.,,: .,r, ° 15.VpaT.a1 ,005, 5.►00pr►5a '.N. \ga050G0►00e 05►20:•40500,,...a►,,.,^;,► 1;•00►iOpiS .1r►v'.aGe►i , N. ,5►G►5..r .1 ,►i'•i.5►►\ / �, (a►Op.\v:.I. ► ,,....r I, 21.. .►-.r• 10.OF . > 3 F T .....•_.rasa L., k. „r 21.0 �2\ . \. .;oa0r .r,�, 013.4 Or:.,. GAIN 1 ,. :2s5, , .5,ae,,,,,.•,r• ^•?•,7050: ,r5a05.i a. `/4,0. ..gl/41,..,0.•. 1/ ,",•.AN:',11Nner,,5,1:•i\, k `.L. 1.41•/ • .116 2\5.: „020 .._ •-i.._. ,. .416 • .gar.. •022.,. , • ,r ror .\ bs ,see.. 0 TO - 3 FT LOSS ;•"a. .ii > - 3 FT LOSS Plate 5 : Isopachs : 1933-1976 Surveys J� v0 N O • Q� � ,� Q.00 44../21.. A, -i• •: _ 14w a• :10:0; - .r . • ..enol JCD /�/ /� Q. 10. •- �Q°•�'�'O\ ti PORTUGESE BEND ,.......7A. .•.:•6..,:::-,•-•-• eneel h. 02.1,,: r•.'/'►:a8'.o. 1010►q n \ `\0i 020•` 0\1001100► • 2►., a►,► . . � ' Q. 6,04 No aa►o 'Odwr T�� d►a04.a.1 tel'. O (o O� 100•: ,.rd a►OOr._%aaan►0 - ,.anam. -..•. Q ..-CO aha' .• '�iaaa,2a0 ► 006.1.!..000 w 11"_ -_. :..w 01000r_:.a 00.1200.0 e •:•a• ,, ,-�, '�.� 1.000 0 1 000 2 000 3 000 4 000 � •.r/ lar/a ara..r.,.►o0,21.0. a.� �.,'d ., o :•►-1.. '►d0� 04_••a0C,000 O 0000 •v.. �'" C. y•• ► 0.r ► D �� �w1P.,- 0000000 •1000_700► '•10200• ••ir;'.Or, Nli 0214- JO, �o.,r_ ,• ..Ow �i•='�.,. lab .w. .►r. �� .�J..1.-0:'r"- C„0,1'_Oaaa.°•-- 0000 • 00 0►v. . %�► • BI / 100 nor,*.► ..•:0.e• •.4,C _ 2►0r•'c•Ay1r:, Ndoi;�., o _1011..,.•lea._ %,5:•.acz_ua�zr 0002 .,.010100 0110.•. i 't ` as �►:� ....fora c i\v v, - -t •. .0 ,. . rz^•DL 000,71: i►'a2►a �`�' ►►,2a► ► a►• _1111 _ \ I:►.►.► �• •00.••••"_:....m...- 161,111,k00 ...0.r 0000 SIµ SCALE ® 1 - 1 6 D D -.,.- , ►►1x10'•0► `•..:aada►i _� 0.q Oa•-_^..� . •,, '� 100;4. ; �'p -ON ►04, •.- .�..► •►1 .a -.� ri-- n,ari ammo •0X20• ' Jar ►00.► -'�.;.r 20.►I►. �►► • ,•' ,:�-•- �. a►►. 0100 7► 10000.0 00 00.01. I ►ii 6►.��'I ./•' 1i:-•' ►00211.�r 4,1 ►:1• \4,r\ 1 •aa '•♦ e �/ 1►► I nv: 1►►'•.. 1• 0.0 ••.. \ r \\0nar�\0 0007 \anal '-`J�•• \\. i\\\ - 000;,2►-�•�\._ \101Ia10d\. .. a 0000 \e,2•,o\K'\ ••► arAa\►y/a. .. \I►•Dar 00•. •\%\I\ ♦ ' \►..-1.100 `/a�• •\4,d o ~ avaard aaata tare .\. 1000 0...eel\ ,• \ .\ .: Iaa naaaaa11a10anan led r:, r 1► _ 0,200►:.. tall l•�►o 1d ►1 �•. de,2Orw ri►,2e,2OMa,2Ori p!; �• I 000aq► __•4 - alDal a►glaad.. r `La/0n0GL\neaall/010• ,d. .x0,7.11►►'rQ110► •0V v".•1�: 0• 0 •/\ , ,► 4,R9a U.• Gg5aa:r• ear. 0 '..._ 0._a0000100gan01001 Q. a \ •Fa00i aigan►o�Ia `. ,r�n 4,r 4,r 4,r 4,r .r d,: .��,'.,� ..pol:.:...1 el 0.r 4, • h.. L. n �►n 1►.,1►1►a .�n: • ►I 000.. ar••aG� `•. no. 100,7•.\ •i_ r.`• 1 ►►010:•. •ana►.a `•�. ^ :40 1►1►.•Q i •1 •.` k ./. 011.GO.net 4,L?r..adel . /'� aanaanJ► •0800.010000. .0' P4d0 .,LC,d.JGad. `', `000,00►: 9A10202a..J1. 0►....SS eled►l; :11::��`•• • ,`� -''000,2.,2.- .r4' ..��m. '112►► ® I. 1112►• a2� mOi:�,d.►\ 1001 •..` '.r. 11.000 Z. C. �0• .R.. S% s.20. 0i. .. •I 1�". '• 6•„7 12,10 li i .•Ori n0. ..40,20@ 111!1. P:,...4•1 1.101► ••.. •">•. 0 500• 020;,•.2• • 1 .. 4.• .a 20,401.;.'1,200t.0.1 �n►0 C.. 4.• ..- iii •40•• 0 •'►. �.� \N►ar 0069 �. •.. .•.Y.G. O•. J \0 ►r4\"0%. 1.6:.,►.0.•//a 111111 4 4 4►►./.-' ✓e -9 \. ... •d• ► nad...r0 a .•• ,211. ,7.._ . - . .. caa 1► 101010,2► 1.11.•.re• i�d.' w� \v I►4 4,%alp0,413P211501.20.1.. q ,\► v C( .•1. .. p2O._0► ►, u� C. n"Z....;...,••►•.i� 1;tC�r�. 1001 ►. !►►.� ,n 1► . ' j►n.._..__� ei Vide 1. :. a 4,:/ 10ad0omom f.. •r► i..00 dam••_.••• • _ ♦ l V•! In de pa ►�:•►►a 1000 • ane 4•riap.:.C• a,2a►10►► 4roio•radl`:ia marl Or \10. •gd.•••on 0.010. 0r .,2.ar/.d0a. 1•. amaac mop or... • -v 06,100120 0. \ ,d. Ir.►e40003r ear,. arr.._.� J.a �adead0dead,•►.��` •'•'• A,2aa2Dr•'" -?.a1\� \ 001►004 1./aOgD:0000,0 \•da►no.uogo ria► h. •Nr 1.000000 \\\,,1►�•a 000.!000 •ri►020,2►a,2a,20►hr. ►1► na,2 OoC• 1►►aona0�ln.a,24, • 1►►►0�•O •.Orv•• -„105,0.. - 1020 • • 0A\.a m r .a.• �' ciRuea ,2002• .d►►o..►.• .►�a1 ••,►a► 'ROW.,MO. 100 ► O 101100,2•► '00,000,26.'. ► 400'1.110, 1 \►� -`• 00.0000 , ► r\• el 151114120.1:0 1 •1 ► fidr' ��` 00:••••••••00.. a.1100 Q.01. r. .►/ ,2001 do. . ,2 1.: •a ' F \a 1100► 100.1. 1r'. 0010?•00002,► `,cam' i•., On �\._. T erarr}.}a►0v..-'d.:t,:12aa,��.'.' N.0010► da.-.. 110 -„neN► . -1 4 4.54 :�aa►a. earJ amaa. 'c c 0000 00 \ 1001.1.Oa :1.141 0. ,2a►.ar/ 1101140 `4,a►O ►eSP147aa 01. •. ed.MO* .,.A,' . 2:• r.0,200 paaaan►a•._•- .. . hreg.0•7,..'Pk 4a] .90ad GO0,'. .0..0• a.lada0ol,4 ,• 1,2002 4,000 201.]^11• 14q .\.:7►•••, a 0,200 a a►d ••,2101010 da► ►111 i. •i1:s100d._.. .\a 0eleTe••.u4,► ...•'d'►. F” 'le a 202►IG,O 1011171.' Saa•:.d�ie i►►/j•40:udei,.:w.ana�E•.. z NI, mono moo on 0.2•:, ,11...7, :101isG.0000000100101. '' , i__i r •0.000002 0000100000.1. la.a /►4067,40,200,40,200r...1, ►`h•,2. ... - 010,2a►d • 11�1001014 a OC1..• 2002 1,20.0,20.20:• 100,2.•. 0\ 0 •e ►►adaaml��1'ea.4 0102 02 0102120 1011'20► an►0.1,41a.a •1. 4,da "wham 402 \r r. 051 42 Iae2r.14401 W.ri�.1► 0- 4,► 10711 2000 02►. 02 ` \ I "� sae. ► O2►i i►fGOraa 0201 ':'�. • 10031 OOanaa►.ada, v, �y.1,alak 1l-:L aa. 1 0.4/or r1►:.. P.410.41 ••. 10.►4.41►20ad►2 a•. G e 4 .wO7 0►dl► .. •. 002• r 0.r ,7500,210,7• 6. 4,0020.040�••,201 0,211► 0 1I. 0,20.2 • •:20'5 • 00.00 ;0 •.Jri.10.•r -y'5 ALJ 441.5,l►4,LId.2 .,2.r:�Nar a�o2•�r.. •.,o.• '•r aor� •..Oar/ .0..r ad.:•. .•.fir / da\►I•G110.14,.'A 'A • a 0,20. '. . ...•:,o-. :..:10..•-►•4,0.0..10..1 41..0rar..As ,. 1 a4.4OI.,rer//;ia,2e./ a�a,2•rioo'a " • •11:.. 101.• • eo,.4c0e,. \,.,002•.... .110,.:.t06 '-, •4,2010 000..0/ ar..0,.• .►1•. d► 11 1.20,2. a .r,. rd►n.34,.N.,r„tlde2a \ Nadal 4,r 4,r v 'me.* ,"•.._-......',.::.•1► : �► _ I.1►:• p 1 '.Nv1Co- ,•• �,1�dr/JgaKaarid10a2 4,.0007.•. ��Oari 1► 'Ir 0��,2. ►n ad0e�� ,OrntL r 5000r4�m 3 a►moo :IMO►►a 020 ,,-,• y 41 G..,♦.2•\4/ 10,d.i•,p aa.0�00,20a N ,•0 126•0•• 21�rd.•11ii4.:�•. 1D�� • 6-00 '*o S% ...p,2..► • ..145.m. '� NOTE' CONTOURS SHOWN ARE FROM JULY 1995 CORPS SURVEY, AND ARE AT 10 FT INTERVALS `ed ''O'i° •`1°' 4,010.. \, 01400---,..,Id►�• 101.,7_ r / LEGEND 1111 :• �C. • ell Win :r :::; \rQrrd1 e,2 v,._ CI , 100 10 .. . .0.r ., -0.'w •10m0o2a20ri• wi,..-- , o -,• omoo armor/a. �'•,. ••.� N. Onoasama104,.,a • 1012/ .. -.5, .\200da202 IV, 210.. Nj 1-., ►.Oda► 4i P •'►02001 •. 4,► ♦ 1a410. 4 ,0.0.1• Q1dO 'k I:A*a0/ $_ aP2OraTa:•e S'7. . 0 . ►/Ori dear 1 001►, ►002,,1 •:a.._ 12► Y�. Od�.''►► �' > 3 FT GAIN 014,0.0►. •. -.,d►. �. ,, 00'. •a \e ,'.. . 4 10. .. \c. `, 0.2 mean. • •ado beat..de02• • Mk. ►00. ael.,,20►.rid?IN 0 T O - 3 F T LOSS d' dad'''°r 111 > - 3 FT LOSS Plate 6 : Isopachs : 1976-1995 Surveys • . . 918°18' � 118°16'� ° 11'8°24' 118°22 118°20'118°28` 19826.' ^r _ + t+ ` L7 t 5 46' 4v • i {� • • „ Figure 6. Concentrations of p,p'-DDE at the depth in core at which the i r • „ r Y:I °' : b,}, ," concentration is the greatest, based on LACSD 1989 data. ,i ' / a t r I,/ , • • • .., .. C ,, ... ` ... \ , ...,........ it - '� ;,•- t T. t r•• — , • E , . • .....,...„.....,„ , . - ` r-i. . 10 j l Y 'Rry ~ti. Y.. i• 0 e i t t � O�� CoUC 1t F. r r ',,,,....---\ 'r 5 • y o e ti i 3 044' •H, i , • t x : 31° � ,, z n ..•.„..:. Contour intery i3:: 50 m' *) \\ \\.\ ...'-•''' e• » • . ./,.,tea.; ''-a,:` _ • • a_ ... c\%p. \ '' )\ "�' . w. _ ...”,•.e,-1,N `..!•-- L ••,ate r• • "u '.YJc-w i. a Yr:�^- . ..-•• a-t• ,,,3•^. ,4.."..a-'2 ♦ .. Y`""""`9. .ri1+, ! 1. r� r iwk 1�Gq' • + `w.« Y . g;,. Y-.� :>"r S • `meq '4%., ` e �w Y`•..w t, F;+ ��" t;t meg.. :"+'•{� ' 7 ti ��v.,- • 7• - +✓ r"v+,`M _ III Y. ..,, a i V `.'rim. i� •5 } 1\ 33°42' + �� 33°42 .00 , y , 310D • • w. • Mercator Prosection at 33.7 N, NAD27 33°40' + + _ y \.• + 33°40' Y"v 1.08 •• »t 'Y • 118°28' 118°26' 118°24' 118°22' 118°20' 1-1,801-8'3'....:. 118°16' Plate 7 : DDE Concentrations on Palos Verdes Shelf • VALUE ENGINEERING PAYS I- Z z w o PROJECT w cri O LIMITS w x ,ho fr to to AREA 1 o D trI LEGENDn co_ g i, ,EA 2 MAJOR CONTOURS AT 10 FOOT INTERVALS l -----------_- HOLECENCE SEDIMENT THICKNESS CONTOUR (DILL) ASSUMED HOLOCENE SEDIMENT THICKNESS I HABITAT RECOVERY/IMPACT AREAS ®\' -110 FT CONTOUR DEPTH IN FEET MLLW 5` SEDIMENT THICKNESS IN FEET AREA 4 itiii.Air : , r eg . . • ill __ 0 T ' al0 AREA 10. T " �T \',S IBS d9B�I _l " ` Is \ _ OA=18 EMI LAYER i..68 11/1788 NOTES. mm mmm o mm mmm 1. HOLOCENE SEDIMENT THICKNESS OVER BEDROCK ,L"•am ormmE.mner m Ama (CONTOUR INTERVAL 5 FT) . SOURCE. R.F. DILL ET AL. 1995 `a^Q°' " ."...'O RANC3iD PALOS VETOES FEASIBILITY STUDY LDS ANGELES COUNTY. CALIFORNIA 2. USACE JULY 1995 HYDRO SURVEY CONTOURS AT 10 FT INTERVALS. PLATE 3. LAND CONTOURS FROM 08-95 AERIAL SURVEY AT 10 FT INTERVALS. e a SEDIMENT THICKNESS RECOVERY/IMPACT AREAS SUPPLIED BY THE CITY OF RPV. T�q m ..Q„m., WRI WW IRTZ:mos. IP SAFETY PAYS 0 Plate 8 : Sediment Thickness Contours N O4 • ./ co o GO <4. O J ` + '� � .s ---71),..-.7.. .4,_ ""a � --; � ,` � ,s. _ r LEGEND=__ __ 3 <<, .�; �4� u,Yie^>•aa "? ROCK/SEDIMENT BOUNDRY PER DILL 4 'I-1`.`_�_"' ___`•• , D' ¢ r-,-�� • --.',,� SIDESCAN SONAR DATA • .:', \ ‘'..V11-om(',';A*,,.,-.. l -y _ _ �L♦-.3d5�' A ?�'d _ == ►' 5= " �� ---,A,—,.„45., *� MAJOR _ _ _ ,,, r-, r IIS\'" fit CONTOURS AT 10 FOOT INTERVALS _ _ _ ;'' ,�r y J \ it` f ��► p'` y � MINOR CONTOURS AT 2 FOOT INTERVALS 2v ▪_▪ - :-."_ =_ _ = ►"K !• p` .\ 4`�`\ APPROX. LANDSLIDE BOUNDARY .si f„-. ,‘„,-,7:'1,- ==-'="Z''.--_-:::. "..:',-- ''.-''''' $ --t.- ': .--••"'>---z-----'--7--``''' .- -Z--. IN:\ \s"N '' '''. ` _ �``,t __z_ ._ _ � \ \-,..,....z.,-,-.:,$ ♦ tet ♦\ \�\\,; \`\\ ,.\. _ ?, ;` \;4 ;. `,�'. 2222 222 2 2222 4222 :\'s;';-., .., .\\ Vit: '2Z00 , �;\;;:••.•\ c: ♦.` •.,••,,,,.:.,5:z.,.._:-..,;.--..,7 - \\\gip\ \. ti� ♦ \�\ .` ,•,••• i=K LP'\ tr.?,..:‘,...4,,j .4\1\x \42 III ,„-:..,„, „ ._ , „ _ . •.... ...,„:‘, „...... ,...,:„.....„ _____,„:„..„ _ • ,.... ,--,,,,,z:, \\ .,, . ..--.,,s, ,,..‘, ‘.,, ,._ \-,... .,2f..z- ......:„.,:_: ._-„....,...:_;,,„„...„, --,..-.,:.^S.;"-k..,_ � Z. \\ _ \ ` .:\ �_ KELP BEDS __;\ \ \ - - � \^fie ` ' =:— ♦ _ ``\ \ ♦`�.\� KELP BEDS `_ \�..�_,_:? \ \ ...'=,. \\\ ,'\ ♦\�\Z..,-r-3. :. KELP BEDS NOTES: •::::;:,-- �= ;, ti 1. HYDROGRAPHIC CONTOURS AND ELEVATIONS IN FEET. FROM USACE JULY 1995 SURVEY H,4-, '.z,.‘‘ ,.„ --'";; ---:,--- -ti� �� 2. DATA NOT AVAILABLE IN AREAS MARKED "KELP BEDS" DUE TO ACCESS PROBLEMS. -� • '--�_ • ' 3. ELEVATIONS OF HYDROGRAPHIC CONTOURS ARE IN FEET MEAN LOW LOW WATERY = `�`;r„_� ;`\ ,_t,_ 4. LAND CONTOURS FROM CITY OF RANCHO PALOS VERDES AUGUST 1995 AERIAL SURVEY. `;• , ;`\` _ 5. COORDINATES ARE CALIFORNIA LAMBERT ZONE V (SPCS 1983). 6. ROCK SEDIMENT BOUNDRY DATA DERIVED FROM DILL SIDESCAN SONAR PLOT, - _ OBTAINED FROM A DILL. OCTOBER 21-22 1994 SIDESCAN SONAR SURVEY. _ ID Plate 9 : Base Map 4110 Depth Limited Breaking Height for Rancho Structure Design Armor Layer Stone Size per Hudson Eq SPM 7-120 SPM 7-12? armor layer underlayerunderlaye• Nearshore water mean ds(ft) SPM 7-4 case 1 case 2 thickness wt(tons) thickness Slope T(sec) depth tide level ds/gt^2 Hb/ds Hb Sr wr cot Kd W(tons) W(tons) case 2 case 2 case 2 0 2.86 2.86 0.000308 1 2.86 case 1 0.081729 0 31297 1.8101284 0.00613 0.840194 1 2.86 3.86 0.000415 1 3.86 case 2 : . .,i > 0.200928 0.1(10696 2.4430331 0.01507 1.133964 2 2.86 4.86 0.000523 1 4.86 0.401039 0.3b0779 3.0759361 0.030078 1.427734 3 2.86 5.86 0.00063 1 5.86 0.703025 0.527269 3.7088379 0.052727 1.721503 4 2.86 6.86 0.000738 1 6.86 1.127847 0.845885 4.3417385 0.084589 2.015272 5 2.86 7.86 0.000845 1 7.86 1.696468 1.2"2351 4.9746382 0.127235 2.30904 6 2.86 8.86 0.000953 1 8.86 2.429848 1.822386 5.6075371 0.182239 2.602808 0 7 2.86 9.86 0.001061 1 9.86 3.34895 2.5'11713 6.2404353 0.251171 2.896576 8 2.86 10.86 0.001168 1 10.86 4.474736 3.366052 6.8733329 0.335605 3.190343 9 2.86 11.86 0.001276 1 11.86 5.828167 4.371126 7.5062298 0.437113 3.48411 10 2.86 12.86 0.001383 1 12.86 7.430206 5.572655 8.1391263 0.557265 3.777877 11 2.86 13.86 0.001491 1 13.86 9.301814 6.97636 8.7720222 0.697636 4.071643 12 2.86 14.86 0.001598 1 14.86 11.46395 8.597965 9.4049177 0.859796 4.36541 13 2.86 15.86 0.001706 1 15.86 _ 13.93758 10.45319 10.037813 1.045319 4.659176 14 2.86 16.86 0.001813 1 16.86 16.74367 1255775 10.670707 1.255775 4.952942 15 2.86 17.86 0.001921 1 17.86 19.90317 14.92738 11.303602 1.492738 5.246707 16 2.86 18.86 0.002029 1 18.86 23.43705 17.57779 11.936496 1.757779 5.540473 17 2.86 19.86 0.002136 1 19.86 27.36628 20.52471 12.569389 2.052471 5.834238 18 2.86 20.86 0.002244 1 20.86 31.7118 23.78385 13.202282 2.378385 6.128004 19 2.86 21.86 0.002351 1 21.86 36.49459 27.37094 13.835175 2.737094 6.421769 20 2.86 22.86 0.002459 1 22.86 41.7356 31.3017 14.468068 3.13017 6.715534 21 2.86 23.86 0.002566 1 23.86 _ 47.4558 35.59185 15.100961 3.559185 7.009299 22 2.86 24.86 0.002674 1 24.86 53.67615 40.25711 15.733853 4.025711 7.303064 Plate 10 : Depth Limited Armor Stone Sizes • -. ,_ - :z- --> mub -_ ..pry •. .. - _ *-•. c,. _. .__ . -_ ,...0.-......_. 0 r w , PALOS N IDES DRIVE PORTUGUESE BEND LANDSLIDE — = = BO -o R 9 4 ORI I ) 0 • - _ :1. == = ill t Q .. a•- i— •,L '4 ' ._. O_. ., , `I z ®F _j4 _; u; ------------ `. r r r - a ��rra . ''` ;%,,.,27 .T 2 2,. 9 ,..�•..' --• ' f �;, \ _� `+--- DATUM IS MEM LDwER LOw LATER sxY r''''''W..u.C..• '' ... it. ;1RNY-ErcrHe£R....n1sSR Er'Z''='•:., .: • 1� PLAN: ALTERNATIVE 1 --- ---- — — -- — NOTES: 100' 0 500 BRS ALTERNATIVE 1. B/W 220 FT FROM TOE 1. HYDRO CONTOURS BASED ON JULY 1995 USACE HYDRO SURVEY . -_MENNEN —20 " .'.:.,Cf.."3, PLAN. CENTERLINE. FOOTPRINT • ' 2. LAND CONTOURS BASED ON AUG 1995 AERIAL PHOTOGRAMETRY SCALE Ars G..a.�s.. .: 7.-07----7 Tr:9•. 3. SOUNDINGS ARE GIVEN IN FEET MLLW "'oma•.o "�' , .�T .. _.__� -__...._.... .. .. ._ ....._.._...- .._.:-c __ >__ .-..- ._....: ...._>......-.._.. .....-.a .-.. .._..._- ds:.-...rx•... ..._..._._,......_...._....,-._..,�..- __,... PSS -...,,.n .,._.._ .,._-.=.r.....:.._.=� .._.. ...�.._--"%—�:a'^�..�. Wg i*t malts Plate 11 : Alternative 1 Plan ......................... ......... .... ............... ...................... .............. .... .... . ..... . i 7' BENCH STA 2.31 TO STA 5.00 ONLYq. VARIES •18' TO •25' MLLW OCEAN SIDE B ABOUT 2 � 2 OCEAN SIDE <1.1...:,,Z.: 9' I 1 r I 4'5 �1 9' BENCH STA 2.31 TO STA 5.00 ONLY / i i �'—'�j CORE!STONE ��"�� �--15' A-6j STONE I j •13' MLLW I / B 0.6jSTONE VARIES I f'ORF Tf1NF 1 VARIES -6' TO •8' MLLW I $ VARIES -4' TO •14' MLLW I TYPICAL SECTION A-A TYPICAL SECTION 0-0 T STA 0.00 TO STA 2.30 STA 22.70 TO STA 25.20 13' e. VARIES •18' TO •21' MLLW I A-6 STONE OCEAN SIDE 2 I II— B 0.6!STON 8' 5 I 1 ! 411111141111111 y a COREISTONE I • Poi I I VARIES -4' TO -8' MLLW I TYPICAL SECTION B-B STA 2.30 TO STA 5.30 4' i i •21' MLLW OCEAN SIDE A-9�STONE 2 I I 2 11— B•1 !STONE 10' —71 1.... 20' al I � 5' li 0' CORE !STONE I j Wow IS REAM LOVER LM RATER .. I VARIES -8' TO -10' MLLW •Mitt 1.F.,..... .. ITCcvP 151ry I TYPICAL SECTION C C LIS AtCcLES =PPS CV MiNEEPs -_ AT STA 5.30 TO STA 22.70 ""='" BRS - BRS ALTERNATIVE 1: TYPICAL SECTIONS ......................... ATS Xis .Y gfAn Plate 12 : Alternative 1 Sections ay�Twwvwmw.'+t--'T•..an.wM�^ VE_.S r.-_.-,.........�r.w,+..-=== _.-.1-t-•`...'L'.==.4L'^�:^.,..••�y.'•.`i4 _.,-.r - =+Q.1+.. �,�,1.�1`� ,...4_,„,..._,,,,.... ...........,-.., r• . y y A _ iit PaLas �ERN DES DRI E e • is u PORTUGUESE BEND LANDSLIDE a i „ t. A NT N R Z SRI F • 4 �r- n 'sl:'s:S:i:.si.i$11$p,0?.N/‘5,s7 .;i' '1 _ moi, - C '` e`. 1 ii'.�-,y:J I;t t:. - i. \�. '. / - f Illi WTIlIS MEAN LOWERLOY WATER" __ - '•� azvlslaa � -' _ zc:.•.,."....,U':S:FiNt'r++LtnEr.'R'`O'TSYHt[7 ..:�.s..a_. - c l., fNCl SCCMPS of E PLAN: ALTERNATIVE 2 BRS 4 a.. NOTES: 100' a/ 500 i BR3 ALTERNATIVE 2. B/W 400 FT FROM TOE 1. HYDRO CONTOURS BASED ON JULY 1995 USACE HYDRO SURVEY �� YJmililm -20 acc31.o3, PLAN. CENTERLINE. FOOTPRINT 111/1 2. LAND CONTOURS BASED ON AUG 1995 AERIAL PHOTOGRAMETRY SCALE Ars 3. SOUNDINGS ARE GIVEN IN FEET MLLW "'oma,,., = °`'?' I o..... 7 PV9SFSA2.DON Plate 13 : Alternative 2 Plan _ --- .., va.u ENG NEER at PAYS� --� .��-3.=.--- ." __.�._ IC. II 7' i' tf _ BENCH STA 2.31 TO 5•00 ONLY $ VARIES •18' TO •28.5' MLLW • B-I !STON 2 9' it j 2 9' BENCH STA 2•31 TO 5•00 ONLY X .4----11. CORE iSTONE 4• —II — • I i I VARIES •14' TO -4' MLLW TYPICAL SECTION A A STA 0.00 TO STA 2-30 : i 13' I . VARIES •18' TO •22' MLLW i OCEANSIDE A-6 STONE 1 2 B 0.6iSTONE8, i. 1 I— ! t 1 1 2 16' CORE STONE 4' 1 ` • r i 1 1 i • TYPICAL SECTION B-B VARIES -4' MLLW TO -10' MLLW z AT STA 2.30 TO STA 4.25 16' •22' MLLW - ^�— 15'--��-6 1 STONE LI' i • IfV "" j VARIES •22 TO •24' MLLW B 0.6 STONE LOHh 1UNt VARIES •13' MLLW OCEANSIDE 52'\ A-12•STONE 1 SVARIES -10' TO •8' MLLW 2 1 TYPICAL SECTION E-E 1r— B 1 STONE STA 23.00 TO STA 25.25 20' 11' 2 • 1 1 10 CORE TONE 5. �---..- i i' it TYPICAL SECTION C-CVARIES -10' MLLW TO -14' MLLW AT STA 4.25 TO STA 8.25 AND STA 20.25 TO STA 23.00 18' 1. ., •24' MLLW • i i A-17 jSTONE . Dow IS TEAM LOr,ER Mr WATER OCEANSIDE 2 1 ��' 1 r B-2 STONE ,,,..0." _..,...,,, ••••,.•:� REvtStRd i LtS LES .; 20' —I i CSW�s as+(F Exf1�EER5 HCORE!STONE 6 10' O,:=Iv.• ; . I �----� BRS • ! Wim. : ALTERNATIVE 2: TYPICAL SECTIONS t ' BRS i r_. • . , txrCirE4 3'.i i VARIES -14 MLLW TO -16' MLLW ATS • TYPICAL SECTION 0-0 Alone _ ` ' ,.mss>. ce'e `vas STA 8.25 TO STA 20.25 ..�•"" r2(1 Plate 14 : Alternative 2 Sections , `a^:=.•�:1=vaa.e_-.........,_'rx,z�:::��:_....;..,«,,.e--� r- . c.!� . .1.....,-.."---..410,...-""-."..' ---"'"--",-. 2=-.7:=•_= ,.....--...,.....--_w_.=auketwzsar.sulx„,--,-_-,===,..=...---. 7,1,-_,,,,...____,.--.-..., ,',.— ,-.. .... r-.--...........,=.. • .' . P , ALOS .,. . ., , . . . , , _ • ,, .. , S DRIB , , . ... ... .,., E ,, , , _ , , , . . , , ., . . , , . . . . , . ...r ,,. . , .... . , ,., . ...., PORTUGUESE BEND LANDSLIDE , • . YACyT Z ii Z ) z ,;.:-.:----- ,,,,,..::,_____:.,-.:.-:-_---------- ...---------------------- -------__________.___:______ -4.,...........o ",..z._,:„............,:. ...., ss ..._ r , 0 ;r \ W • • \ _CL Z C� r F— Q l..G*:`. 0 /''', '''''..'"'......„ IN,. ,:s, . ,), , 7,,,-,,-,, : ;../y ,r,•'-':-' s"-•-.--' .S.--..--"--''' '- •-,, •-- ,_ 11 y, ,\ /L ' `\ ^ • y Vii► _ it J `( � (��) i `�Vii;l; • _ • _ _ ♦Q • _ vJ \ ' 10 `\ ♦0• * pRit� IS SEN\LOMER Lor WATER H.�.. a+ • Ass,t5C1i$re . rJ. NY4cr ar3Rr_r_ :..; r _ LQS atyGs__C 5 PLAN: ALTERNATIVE 3 - - 10 K'G' = BPS NOTES: 100' 0 5500' BSS ALTERNATIVE 3 B/V 50 FT FROM TOE somommi 1. HYDRO CONTOURS BASED ON JULY 1995 USAGE HYDRO SURVEY ____ .�� _20 -yt.r. PLAN. CENTERLINE. FOOTPRINT 2. LAND CONTOURS BASED ON AUG 1995 AERIAL PHOTOGRAMETRY SCALE ATS • 3. SOUNDINGS ARE GIVEN IN FEET MLLW r°`o::...4 ,i.,:,' 2 _ - Pv9SFSA3 DON Plate 15 : Alternative 3 Plan AL w we. 1 PA_....._ a e • . , ..., S ELEV.VARIES VARIES 21' STA 0.00 17'STA 1.04 TO 15' STA 1.04 6' STA 0.00 ' 20' O7:1:172,/,):________:11/ � 4 2i 10' —l1 B-3 STONE i 1.5 VARIES CORE S1UNt : VARIES 3 TYPICAL SECTION A-A 4 STA 0.00 TO STA 0.50 ELEV.VARIES VARIES 13' STA 23.00 17'STA23.00 TO 17' STA 24.50 V ? 6' STA 24-50 I Y Y 20' �i _., , OCEAN SIDE 2 i 20' 8-3 STONE 2 ' 10'MIN 1 1.-L-1 5---'II 114 OCEAN SIDE 1-6 i 5 11- 7, B 3 STONE r 1 17 2 •13'MLLW i 2' I- STONE . lr 7' i 8-3 STONE I1 5, 2 •6' I I -12' VARIES - 0' MLLW 10' 7. 1 r B 3 STONE CORE STONE I f MIN i i TYPICAL SECTION D-0 VARIES STA 23.00 TO STA 24.50 TYPICAL SECTION B-B STA 1.04 TO STA 10.87 i 20 OCEAN SIDE i 1 D• A is'CAN LorEa Dov rar¢a • 2 •13'MLLW �__. __. --- 2• • B 3 STONE 2 I •6, 7 ! B 3 STONE —I1 �„ �� q`ey�y� _ II II '_�iiY=ec+ci cilia"rcr is j usW�t'£-Es i i 0' MLLW 1 r B-3 STONE CORE STONE 2' MIN �� _ ___.___.• t E U !Rs__ __._. 3' i BRS VARIES TYPICAL SECTION C-C BRS ALTERNATIVE 3: TYPICAL SECTIONS bErw Vr.:u..:. STA 10-87 TO STA 23-00 ATS (c......... -5,2.:,1.mv, .1,..E .s,ev . ..___ _ R moo__ Plate 16 : Alternative 3 Sections iiiigilii mmxomra000en�\mv�em�. .�...\v�vcaa��ea�a,�vaua\s,�m\�.,�v. wo�\\•ro�rooavww\r\roe� ................. i�wa: roix�iaoocvaitocoeewrroeec;:roicswagoeat\+cmuco.... ... .. ..... .romrcaeocaccomaccooMooco .aromt\\xcamatOmmEmtivmem 31,%\\ 1Z\\\\\ "ice .ry� --Y \ �,.. u -�• - - J ws.\\1/4.:,.\-.:,,ki&--- /dr -\ �� \• �-, 'II ------=--- _ ����e =� ;�� i.�r< (( " �� `�te r.. ////////////0/r/ �\\\\\\ �'' . ' 0 >.... lY 11 '��� ��- >> Y _�-�<Il\(\l -� Y��I`� ---4-t-- . _ _. - .---- . ���.�� —.-_�\ \ '.� `��� � / r �.,� �`\\��.. - +� lk�i 1 ' ) J .,_I —PALO % �\�_� - — ` _ (tll{IIII(f01f(il , \,` �� 1, 1 r\ 7 . �.4--�. .� ,:4, )° % ..� •-`y " t fes=--_ �s,rt, t--�`~_ --;_ =` QI I���\� \ 4.4{�il`� Y " ;' / - . \� ,,• ----:C'-<:")) /, 'f��\ \7 ¢(�'' 1,. , ,�/}(; ,11J/ ,rl� ��1 — ,-tea _ _ �; ' l 4Il'{illll �1 ' �\ / lS C / '\ L:. b'J ` � !C J (>� / t J�l� mT �—����_ �`� ✓f e / 1 �} ' I l \'. 1 e /� �/�---- 1d'.,,— �_. ~��. 1�3"J' ^; d1 It' `. J _ _ \i"-,-.�\ T -" m.e+ '!I �I , \\ , ../ .....k:V.A.., A \,,.,,,,,;.:::._ ...„,--;;;... ...../..<0.„_....0 ... __—:,...,.......\-7.',3. -....,,_7......=_.t....._:_,-,"..., " ,.;..-4.1rili..,--:....... ,....4.7...../. ,......„... ...1.11,,,,/„-\..si,;'.: ,\ .f.:r ..‹..,___ A "ot.„0 .........\ ./i// 1„(714,2. 7 2...,......._\\\\.....,.__....... ..,_,..„:„...... ..s..,......N.„ ,'„,\‘,\\.‘\ \\ .r-: iii �- <(7 v i / "1a..a 4.:-.3-7-4.--0, ..\\,..$--.-- .moi— e,, >.?1 - ,1 11 1'4 p ��r *--7,-{ J// ......-_—,.._-_------_,....;_-..„.„ ,\\\_ .„\\�\\�\\\ ''‘\--4p./,--.=:;, i��j 0- jj/y„ :49,, �, `J/ —���F J J��JL ,�\ �j, ��/( '1(111 .. ���`^'��r �!0:,-o.�� !f ,- \ 1-14 ~\ '" -_ • ' ;--,;:46_0--_,_ �r���yrs � -_-,-,---------_-_<:-___ --;_,-;:-. -—`�-�i� ....7...-__:.-..„-,4,....-,..,,-.... ,- �l t\ � 1111�I.`�� z -moi_'^ ��� �_-��- -d� �c+a -,�\� --\ r _ --.� iU �' - --\J`. -� r i \ , v 1 r -11 /' ` a.e \ / // '-_ is / 1 v — , _ — \ — - >~ [`ir � ///� �' // ,rr � `� + `� i-`�\\\ ,..i �1:11 �lif\ �' • //� , \1 (�/ - Jr r PORTUGUESE BEND LANDSLIDE ------ % �� —�� j?, - \ .\, / �/ '1 (9 l,�\ / ,� C-3 23 OCT 1996:DEPTH 154.5 FT. �; \`-.1�. / 'g,!i i-'!.\_ice _/li �� ki 3•,r r - 1 5 �, - z` �\\t.l,t\iri\\�c�R� tx\\ _ ��\�t �7�f /� ,-\ --0... i �, .� �J) \`\\1 BEACH MATERIALS= 0 TO 5 FT. i ',� �/C\ i�' ` \ '' ,� / \\\ 'V.1-;>.'.4, � INACTIVE SLIDE MATERIAL: -5.0 FT. _ C-1 20 MARCH 1996: DEPTH -149 FT. //; \/� �� �T` � �� j✓ ////_ �. r TO -40. 1FT. PORTUGUESE TUFF: —• NOSAMPLESTO '/J` '�""� ��, /( \ „ � .'�`/�\ /2',.« +<., r« -22 FT DUE TO ) }( _-----///fit/144 `t4� =�' \ // ((� \; `\ rc\ \\ }% 40. 1 TO -83.4 FT. HOLE PROBLEMS. REDRILLED TWICE. �� _7/ -- --. _ 4...,t,_ ,b';_\ '+►., ,, /// lii0�-\-1..., �1:. \ j�. INACTIVE SLIDE PLANE @ -40. 1 FT. PORTUGUESE TUFF: -32 TO -84.4 FT. \ _t..72---7 i r. � /,,I� e - _ ACTIVE SLIDE PLANE @ -17 FT. / / �C ' /� C - 3 ✓ 4b. C-2= 9 OCT 1996: DEPTH: -131.7 FT. - ��1\ �1\\z �`1jf t .'. o �� _ ____ ���'� � ). ALTIMIRA SHALE: -7.9 FT. \\ �/ L �" ' - � �_ . �$�® '`t� <._ �„�vrrii�- is ✓ ` _ \ 1 \ • �= - ----j---- / PORTUGUESE TUFF: -12.4 TO -71.6 FT 0 \� �\\1�i+0�\ 111( ,,,�� ��y� �-�� •.�_ -B�g ` __ -�/�(���1\� � �/�/•��r.�����•�u ����� R \�,.` \ \` lI - - - 'T. �_ - _ - � = 7-I) 1KSff/// ((�t�L`���� NO SLI141PLANES ENC:7.0. UNTERED. °�r�Q'�p `': Q s. 0 •!i.1:1 i; lel l/ Q // / '/ ' _ \�\ �� .,. \\\`�� ���,I l#lam 1/ 11/� ' // :s- � tb � �' �. �� ;�`_">�� __'� / yl �, ,•,��-e � ��`'��\'����_�vr YYYYII 1) '�I)itt / (r) fill il'ii\ 1'' / / 1 ,\ Q' ,Q \ �-►QQQJJJ{ 11 �,) iI / \' _ ` _ \ / .i' NNITt�`� \..0\`\lI ( /'/1 / / / / / ,— • \ \ _ _ _\ \ \ �\ c 1.c\ \•Js /, \ I :114'- i 1 I r ` l �/ _ ( cam" �\ �\ \ ` \ \ '4 / + \\• —, - 4 �. .y :, 1, r/ r ` _ - •\ \ \ \ �\ roe \\ � ,� ��` t _/ 1111 /'// // /r �‘ \ \ • . `,\ • \ \ \ \ \\ \ \ o \\ 11j1\:����//i� /ice/ /,;��,�_� —�� \ \ \\ •_. . \ � \\ \ . \\ \\ • \\ \\�`\�\ r- -'\\o� \ o� • g - - -- ( °: 10 ` _— — — 1 \ \ \ ONil11 IS NEM TOYER 101!vaTER LEGEND: •\ `\\\ \\ \ \\ \ \ 1J o GPS MEASUREMENT POINT "\ • " \ \ ® ROTARY CORE HOLE \ o \\ \\\� , \`\ \\ roam I ��REVISIONS �� �` z �— MOVEMENT VECTOR X 100 ' -` •\ \\ \\\ cows�c i s M°° SLIDE PLANE •( \• - 10 MEM 10. NOTES: \\ C$ '.wm 1. HYDRO CONTOURS BASED ON JULY 1995 USACE HYDRO SURVEY • -20 reACKS11 EH t 2. LAND CONTOURS BASED ON AUG 1995 AERIAL PHOTOGRAMETRY . 0 I c.A DoSIAMITTEO(n. pf TE C.N0.OKV:9• SHEET EC 1 3. SOUNDINGS ARE GIVEN IN FEET MLLW cam:._� +\. .I$IAICT CITE NO1 O�98 L . \\\uv.\SWAS.W\\S.\\. WHAM.. \\WS..MO WATA v,U\\vay.MMAI\\\\\VATNTWW.NNANw.vvvvwa\\\\\\vroava\\�ASMO a\\wvava.\\e.m\WA\\\W\\\\\vas\\\U\\\\\\\\\\\WHAW\W\SS.u\\\u\\\\\r .\b uy\�a�\\\\u\\\\WanNWAXASSWAXONMSC\\\+ay.A=SAv\\\\\MAWAeau\ \vv.ONNASA\wa SSSMMA\\\\4o MASS eASSSapwo.w wu\\w\\\\ova\\\ \\\\\\\\\\\\\\\v.\\�. .AX\w\\uu\\wca\.\uvvr v�av Plate 17 : Alternative 3 Foundation Information Local Velocity vs Depth 410 1 .4 i, , , 1 , ,. , Ii , , �, , , , I1 . 2 " , , - i , , , , 1i ! , ' a)V 1 L � � � � I I 1 1 i i I � � M 0 . 8 , _ _-� 0 6 , , , V l r , , 0 O , ! II.. 1 a)III > 0 .4 � � ; , , 1 .,, ,, . , ,, , , , . . , ...... 0 . 2 , ,.: •1 , I• 1 • s 0 • 0 20 40 60 80 100 Depth (ft MLLW) - Velocity ------ Total Q Plate 18 : NMLONG Velocity Distribution